Series 16
- Software

Series16
Software

Contents

Blreteredsvagen 6, 430 50 Kallered
Tel: 031-75 14 13, Postgiro 420705-6

page

Introduction 2
Data Representation and Addressing Modes 4
Symbolic Assembler DAP-16 6
Fortran IV Compiler 11
System Library 12
Operating Systems 22
Batch Operating System BOS 22
Executive 16 EXEC. 16 24
Interpretive Executive INTEX 27
On-Line Executive for Real-Time OLERT 29
Digital/Analogue Simulation MIDAS 37

Honeywell reserve the right to amend the
contents without prior notice

In selecting a computer system purchasers are now
critically examining the accompanying software, for
there is more to choosing a computer than just
evaluating hardware performance specifications.

Honeywell invite you to study Series 16 system and
utility software as summarised in this brochure.
Series 16 was launched some six years ago with the
introduction of the DDP-116 computer and with
over one thousand 16-bit computers now installed,
the purchaser of a 316, 416 or 516 computer
inherits comprehensive field proven software.

Introduction

The Honeywell systems available enable the Series
16 computer range to meet the requirements of
several differing environments:

On-Line Real-Time.
General-Purpose Scientific Processing.

Multi-programming.

and in three distinct configurations

stand-alone.

batch operating,

real-time executive control.

The Honeywell stand-alone systems operate in 4096
words of core memory without backing store except
for Fortran IV which requires an 8K word memory
store.

Series 16 Batch Operating System configurations are
flexible and easier to use than ‘stand-alone’ requiring
an 8196 word H316 or 516 central processor unit
with backing storage in the form of magnetic discs.

Real-Time executive configurations for use on
Honeywell Series 16 computers depend on the
sophistication of the particular executive used,
hardware requirements varying from a 4K H316, 416
or 516 central processor unit to a system in excess of

16K of memory available on the Honeywell 516

central processor. The hardware requirements for
running a Real-Time executive system are specified
in the description of the particular executive
included in this software manual.

At the end of each section is a summary. This
short description gives the computer model and
core storage required, together with the availability
of the software packages concerned.

-
.

_mn

Data
Representation

and Addressing
Modes

Instruction Format

Each instruction as held in a Honeywell Series 16
computer consists of a 16-bit word. Formats of
these 16-bits vary depending on the type of
instruction. Fig. 1.

Sector Addressing

When the sector flag is a 1-bit the address portion
of the instruction refers to the same sector as that
addressed by the program counter; when sector

flag is zero the address portion refers to sector zero.
Memory structure is divided in sectors of 512 words
each. The memory reference instruction may only
reference directly other words in the same sector as
the instruction itself is located or words in the base
sector. The base sector is usually sector zero
(locations 000-777) but the memory lockout option
includes base sector relocation enabling the user to
specify another sector to act as base sector.

Indirect Addressing

When an instruction references a memory word
outside the current sector (other than the base
sector) indirect addressing is employed. Series 16
software allows the user to imagine that memory up
to 32K words are directly addressable. All the
desectorising of programs to conform to the 512
words sector boundaries are automatically handled
by software which imposes indirect addressing on all
memory reference outside the current sector
boundaries.

Execution of these indirectly addressing instructions
requires a one memory cycle addition for instruction
execution. Indirect addressing may be chained to
any level.

Indexing

When the index bit is set, the contents in the index
register is added to the effective addressing of the
instruction producing a new effective address. If
indexing is specified in a given instruction, it occurs
before indirect addressing. When indirect addressing
is used, no additional time is required for instruction
execution.

Extended Mode

Honeywell DDP-516 computer systems with 24K or
32K word memories are equipped with bank-
switching logic whereby extended mode operation is
included. When in the extended mode, the indirect
address format includes 15 address bits in order to
access 32K, indexing is specified in the instruction

and is complete after indirect addressing. In this
mode indexing is specified in the instruction and is
applied after indirect addressing.

Fixed Point

Data is represented in two’s-complement form, with
the sign in the most significant position followed by
15 magnitude bits. Single-precision fixed point
values thus range from —32768 to +-32767. While
this is adequate for most applications the Honeywell
Series 16 range of computers offers both hardware
and software double-precision capabilities for users
who require 30 bit accuracy.

Floating Point

Used in conjunction with numerous floating point
subroutines in the Series 16 program library,
floating point capabilities include both single- and
double-precision accuracies. Convenient and fast,
these routines offer the flexibility of either 7, or
12, digit precision for number ranges of 10 -3,

Fig. 1 Word Formats

Instruction Format — Memory Reference Instruction

qggéaa [l

indirect memory address
address

flag index flag

op.code
sector flag

Instruction Format — Input/Output Instruction

EERERRRE R EERET

device address

op. code function

indirect Address Format (standard)

LEEEELOEREEEERED

memory address

indirect
address
flag index flag

Indirect Address Format (extend mode)
BEEOEREEEREEREEE

memory address

indirect
address
flag

Data Format — Double-precision
1st word

B EEERCE RN REE

sign most significant half of number

2nd word

Data Format — Single-precision
2 e T e
i

sign single-precision number

Floating Point Single-precision Data
Lol Lo To o o olalilarile

most significant
part of mantissa

sign characteristic

EEEEERE IR DI EEEE

least significant part of mantissa

Floating Point Double-precision Data
1ol lo T Lo s ol falilfale

most significant
part of mantissa

sign characteristic

BRI EEREE
. ,

next most significant part of mantissa

A B e EEE

IREEEDIEEEnTRaEn

plus least significant half of number

least significant part of mantissa

Symbolic

Assembler DAP-16

DAP-16 is the standard symbolic language assembly
program for the Honeywell Series 16 range of
computers. DAP-16 is both a programming
language and a language processor. The Series 16
processor accepts as input a program coded in

the DAP-16 language, processes it, and outputs a
machine language object program and an

assembly listing.

DAP-16 provides the user with a symbolic assembler
ideally suited to programming the Series 16 range of
computers. This Honeywell assembler allows the
programmer to ignore addressing modes and to
program the Series 16 processors as though the
entire core memory was directly addressable. This
ease of programming relieves the programmer from
sector addressing and the indirect address linking
necessary to cross-reference from one sector to
another (Fig. 2).

Programming Features

DAP-16 is a programming aid that translates a
symbolic (source) program into machine language
(object) code.

GBQCEaaGION00N

- |
- 2
-
=
=
-
-
-
2
&
a
2
e
-

DAP-16 provides the following features:

Enables symbolic programming while maintaining
the characteristics, flexibility, speed and conciseness
of machine language programming.

Permits the assignment of symbolic addresses to
core memory storage locations.

Permits numerous pseudo-operations to
supplement the standard computer instruction
repertoires.

The pseudo-operations allow the programmer to
express concepts that have no counterpart in
machine language. Among the capabilities of the
pseudo-operations are programmer defined assembly
and loader controls, data definitions and program
linkages :

Allows operation in either a one-pass or two-pass
mode.

Assembles programs that take advantage of the
extended addressing, memory lockout, memory
priority and double-precision arithmetic options.

DAP-16 incorporates the following features:

Employs an input/output selector (I0S) concept for
input/output device selection. (Preselected input/
output for systems with only 4K of memory.)

Provides a pool table for storage of symbols and
literals, thereby avoiding fixed-length tables.

Allows alphanumeric literals.

Allows compound expressions in the variable field.

Prints out and assigns storage for undefined
symbols.

Flags illegal instructions and coding errors.

Allows single- or double-precision fixed or floating
point constants.

Eight pseudo-operations are provided to specify
assembly control, and are used to start and stop the
program assembly, and to select the assembly
model, e.g.

REL Pseudo-Operation.

The REL (relocatable) pseudo-operation is used to
direct DAP-16 to assemble the subsequent
instructions in the Relocatable mode. The effect of
the REL pseudo-operation is to cause DAP-16 to
assign relative locations to the instructions
assembled.

ORG Pseudo-Operation.

The ORG (origin) pseudo-operation sets the
location counter to a specified value, determined by
the value of the expression in the variable field.

CFx Pseudo-Operation.

The CFx (configuration) pseudo-operation is used
to inform the assembler as to which computer in the
Series 16 range the object program is to be
executed on. The suffix ‘x” has the following
connotation: 1 for the DDP-116, 4 for the DDP-
416, and 5 for the DDP-516 and 316. The CFx
pseudo-operation causes the assembler to flag any
instructions that are illegal for the object computer
without interrupting the assembly.

Storage allocation is defined by four pseudo-
operations, that enable the programmer to allocate
core memory words for data storage or working
space, e.g.

BSS Pseudo-Operation.

The BSS (block starting with symbol) pseudo-
operation effects to increase the value of the
location counter by the value of the expression in
the variable field. If a symbol appears in the
location field, it is assigned the value of the location
counter before the increase.

COMN Pseudo-Operation.

The COMN (common) pseudo-operation is used for
assigning absolute storage locations in upper
memory. The effect of the COMN pseudo-
operation is to cause the assembler to subtract the
value of the expression in the variable field from the
COMMON base and assign this value to the symbol
in the location field. COMMON base is a user
option. The COMN pseudo-operation establishes a
common data pool that can be referenced by several
programs.

Communication links between programs are
provided by pseudo-operations CALL and SUBR.

CALL Pseudo-Operation.

The CALL (call) pseudo-operation directs DAP-16
to generate instructions that will transfer control to
an external subroutine, named in the variable field.

SUBR Pseudo-Operation.
The SUBR (subroutine) pseudo-operation is used to
define a DAP-16 subroutine, and to symbolically

assign a name to the subroutine for external
reference.

The CALL and SUBR pseudo-operations produce
FORTRAN IV compatible subroutine linkages
allowing user written assembly language
subroutines to be called by Fortran programs. It
also allows pre-prepared subroutines to be linked
into the main program at load time avoiding the
need to recompile subroutines.

Summary

Computers: 116, 316, 416, 516.

Core Requirements (min.): 4096 words.
Availability : released.

Free issue as standard software.

Fig. 2 Mnemonic Code for H316, DDP416 and DDP516 Computers

Time (pusec)
Type Mnemonic H316 DDP416 DDP516 Description
Load and Store LDA 3.2 1.92 1.92 Load A
LDX 4.8 — 2.88 Load Index
IMA 4.8 — 2.88 Interchange Memory and A
1AB 1.6 —_— 0.96 Interchange A and B
CRA 1.6 0.96 0.96 Clear A
STA 3.2 1.92 1.92 Store A
STX 32 — 1.92 Store Index
Arithmetic ADD 3.2 1.92 1.92 Add
SUB 3.2 1.92 1.92 Subtract
IRS 4.8 2.88 2.88 Increment, Replace and Skip
AOA 1.6 — 0.96 Add One to A
Control SSP 1.6 — 0.96 Set Sign Plus
SSM 1.6 — 0.96 Set Sign Minus
SMK 3.2 1.92 1.92 Set Mask
CMA 1.6 — 0.96 Complement A
CSA 1.6 — 0.96 Copy Sign and Set Sign Plus
ACA 1.6 — 0.96 Add Cto A
SCB 1.6 — 0.96 Set C
RCB 1.6 — 0.96 Reset C
HLT 1.6 0.96 0.96 Halt
NOP 1.6 0.96 0.96 No Operation
ENB 1.6 0.96 0.96 Enable Program Interrupt
INH 1.6 0.96 0.96 Inhibit Program Interrupt
TCA 24 — 1.44 Two’s Complement A
CHS 1.6 — 0.96 Complement A Sign
Input-Output OCP 3.2 1.92 1.92 Output Control Pulse
SKS 3.2 1.92 1.92 Skip if Ready Line Set
INA 3.2 1.92 1.92 Input to A
INK 1.6 — 0.96 Input Keys
OTA 3.2 1.92 1.92 Output from A
OTK 3.2 e 1.92 Output Keys
Byte Manipulation ICA 1.6 — 0.96 Interchange Halves in A
ICL 1.6 — 0.96 Interchange/Clear Left Half of A
ICR 1.6 — 0.96 Interchange/Clear Right Half of A
CAL 1.6 — 0.96 Clear Left Half
CAR 1.6 — 0.96 Clear Right Half
Logical ANA 3.2 1:92 1.92 Logic AND
ERA 3.2 1.92 1.92 Exclusive OR
Shift LGL 1.6 + 0.8n 0.96 + 0.48n 0.96 + 0.48n Logical Left Shift
LGR 1.6 + 0.8n 0.96 + 0.48n 0.96 + 0.48n Logical Right Shift
ALR 1.6 + 0.8n 0.96 + 0.48n 0.96 + 0.48n Logical Left Rotate
ARR 1.6 + 0.8n 0.96 + 0.48n 0.96 + 0.48n Logical Right Rotate
ALS 1.6 + 0.8n 0.96 + 0.48n 0.96 + 0.48n Arithmetic Left Shift
ARS 1.6 + 0.8n 0.96 + 0.48n 0.96 + 0.48n Arithmetic Right Shift

Time (usec)

Type Mnemonic H316 DDP416 DDP516 Description
Shift contd. LLL 1.6 + 0.8n — 0.96 + 0.48n Long Left Logical Shift
LRL 1.6 + 0.8n — 0.96 + 0.48n Long Right Logical Shift
LLR 1.6 + 0.8n — 0.96 + 0.48n Long Left Rotate
LRR 1.6 + 0.8n — 0.96 + 0.48n Long Right Rotate
LLS 1.6 + 0.8n — 0.96 + 0.48n Long Arithmetic Left Shift
LRS 1.6 + 0.8n — 0.96 + 0.48n Long Arithmetic Right Shift
Transfer Control JMP 1.6 0.96 0.96 Unconditional Jump
JST 4.8 2.88 2.88 Jump and Store Location
CAS 4.8 — 2.88 Compare
SKP 1.6 0.96 0.96 Unconditional Skip
SPL 1.6 0.96 0.96 “Skip if A Plus
SMI 1.6 0.96 0.96 Skip if A Minus
SZE 1.6 0.96 0.96 Skip if A Zero
SNz 1.6 0.96 0.96 Skip if A Not Zero
SLZ 1.6 — 0.96 Skip if (Ayg) Zero
SLN 1.6 — 0.96 Skip if (A1g) One
SsC 1.6 — 0.96 Skip if C Set
SRC 16 — 0.96 Skip if C Reset
SS1 1.6 — 0.96 Skip if Sense Switch No. 1 Set
SS2 1.6 — 0.96 Skip if Sense Switch No. 2 Set
SS3 1.6 — 0.96 Skip if Sense Switch No. 3 Set
SS4 1.6 - 0.96 Skip if Sense Switch No. 4 Set
SR1 1.6 — 0.96 Skip if Sense Switch No. 1 Reset
SR2 1.6 — 0.96 Skip if Sense Switch No. 2 Reset
SR3 1.6 — 0.96 Skip if Sense Switch No. 3 Reset
SR4 1.6 — 0.96 Skip if Sense Switch No. 4 Reset
SSR 1.6 — 0.96 Skip if No Sense Switch Set
SSS 1.6 — 0.96 Skip if Any Sense Switch Set
Optional DLD 4.8 — 2.88 Double Load
DST 4.8 — 2.88 Double Store
DAD 4.8 — 2.88 Double Add
DSB 4.8 — 2.88 Double Subtract
MPY 8.8 — 5.28 Multiply
DIV 17.6 (max.) — 10.56 (max.) Divide
SGL 1.6 — 0.96 Enter Single Precision Mode
DBL 1.6 — 0.96 Enter Double Precision Mode
DXA — — 0.96 Disable Extended Addressing
EXA — — 0.96 Enable Extended Addressing
RMP — — 0.96 Reset Memory Parity Error
SCA 1.6 — 0.96 Shift Count to A
NRM 1.6 + 0.8n — 0.96 + 0.48n Normalize
ERM — — 0.96 Enter Restricted Mode
SPN — — 0.96 Skip on No Memory Parity Error
SPS — — 0.96 Skip on Memory Parity Error

10

oop-518

Fortran IV Compiler

This compiler is available as standard software for
the Honeywell Series 16-116, 316 and 516
computers. FORTRAN IV is a one-pass compiler
operating in a system with 8192 words (minimum)
of core memory. This compiler provides all of the
power and flexibility of FORTRAN IV as defined
by the American Standards Association. It features
the use of type statement, block data, double-
precision, complex, logical and octal constants.
From a programmer’s point of view it can be said
that FORTRAN 1V retains all of the ease of
programming and the clarity of FORTRAN II
while adding the advantage of generality and
flexibility.

Fortran IV Features

Five Types of Data.

Data may be integer, real, double-precision,
complex, or logical. Real numbers have more than
six digits of significance (as have the real and
imaginary parts of complex numbers). Double-
precision numbers have twelve digits, and logical
variables can have the values. TRUE. and
FALSE.

Fortran IV Input/Output Statements

READ (unit, format) list—formatted for binary
WRITE (unit, format) list—coded decimal operations
READ (unit) list—unformatted for binary
WRITE (unit) list—operations

FORTRAN IV Input/Output statements allow the
user to program input/output without knowing

what kind of device (for example, line printer and
card reader) is involved. The user can postpone until
execution time the decision of what device to use.

Compiler Error Messages.

The compiler detects an error in the format of a
FORTRAN statement, an error message is printed
in the listing below the statement in error. The
coded two character error message is typed in
approximately the same position as the error in the
statement above.

Three-Dimensional Arrays.
Arrays can be one, two or three dimensions.

Tracing.
An additional TRACE statement is included in the
FORTRAN language. There are two types: the
first is used in tracing selected variables only, and
the second is used in tracing all variables within a
specified area.

TRACE X, X, X3, . . » Xm,
Where X, is any variable or array name. When any
of the variables defined in the list become re-defined
by an arithmetic statement, a line of trace
information is typed, which specifies the name of
the variable and its new value.

The format of the second type of TRACE
statement is

TRACE N

where N is any statement label not yet executed.
This type of TRACE statement causes the results
of all arithmetic expressions (including IF
statements) that follow the TRACE statement up to
and including the statement labelled N, to output a
line of trace information.

Summary

Computers: 116, 316, 516.

Core Requirements (min.): 8192 words.
Availability: released.

Free Issue.

11

12

System Library

Mathematical Library

A library of standard mathematical functions usable
by Fortran IV is provided. The library is written in
DAP-16 assembly language. Standard mathematical
routines available for single- and double-precision,
fixed and floating point and complex calculations are
indicated in the accompanying chart (Fig. 3). In
addition to these standard mathematical functions a
comprehensive package of routines is included in
the library for the solution of mathematical
problems. These include differential equations,
statistical, matrix, and algebraic routines. A selection
of these routines is shown in Fig. 4.

Application Programs

These programs will run on the 116, 316 and 516
Honeywell central processors. All calculations are
carried out in single-precision floating point
arithmetic, with 23 significant binary digits in the
argument, plus a sign bit and an 8-bit characteristic.

MEAN, VARIANCE, T-RATIO

To compute the mean, variance and T-Ratio for
two groups of data.

Storage 626 (decimal).

GEOMETRIC MEAN AND STANDARD DEVIATION

To compute the geometric mean and standard
deviation for a geometrically normal series of data.
Storage 134 (decimal).

CORRELATION COEFFICIENT

To compute a correlation coefficient for N pairs of
values.

Storage 200 (decimal).

SPEARMAN RANK CORRELATION COEFFICIENT
To compute the Spearman Rank correlation
coefficient for two series of data.

Storage 332 (decimal).

PRODUCT MOMENT CORRELATION MATRIX

To compute the correlation matrix for N series of
data and for each series the mean, variance and
standard deviation.

Storage 454 (decimal).

RANDOM NUMBER GENERATION
To generate a sequence of random numbers.
Storage 16 (decimal).

Fig. 3 Mathematical Library

Fixed Point Floating Point
Subroutines Complex Single-precision Double-precision Single-precision Double-precision
Square Root ® @ @ [J ®
Cos @ ® ® @ ®
Sin ® ©] ® @
ArcTan ® @ @ ®
Log Base® @ ® O ® @®
Log Base? [] ®
Log Base *° @ @
Exponential @ @ [] ® ®
Add ® ® @ @
Subtract ® @® ® ®
Multiply @ o ® @ ®
Divide @ ® ® ® []
Maximum Value @ @ @
Minimum Value ® ®
Absolute Value @ ® ® ©
Remaindering [] @
Hyperbolic Tan ®

13

MEDIAN TEST

To compare two groups of data using the median
test to compute the Chi square value of the 2 by 2
table on one degree of freedom.

Storage 274 (decimal).

CHI SQUARE TEST FOR 2 BY 2 TABLE

To compute Chi square for 2 by 2 tables with Yates
correction for continuity.

Storage 110 (decimal).

CHI SQUARE TEST FOR M BY N TABLE

To compute Chi square for M by N contingency
tables.

Storage 240 (decimal).

BINOMIAL PROBABILITY DISTRIBUTION
To compute the binomial probability distribution.
Storage 114 (decimal).

LINEAR REGRESSION

To compute statistics relevant to the linear
regression between two variables X and Y where Y
may be either dependent or independent of X.
Storage 532 (decimal).

LEAST SQUARES REGRESSION

To fit a polynomial of degree N to M observations
by the method of least squares.

Storage 346 (decimal).

ANALYSIS OF VARIANCE—ONE-WAY CLASSIFICATION

To use the data of a one-way, completely
randomised experiment to compute the analysis of
variance table and F-Ratio to test the significance of
the difference between treatment means.

Storage 282 (decimal).

ANALYSIS OF VARIANCE—TWO-WAY CLASSIFICATION
To compute the analysis of variance for a two-way
classification.

Storage 408 (decimal).

ANALYSIS OF VARIANCE—RANDOMISED COMPLETE
BLOCK

To compute the analysis of variance for treatments
and blocks of a randomised complete block design.
Storage 420 (decimal).

ANALYSIS OF VARIANCE—LATIN SQUARE

To compute the analysis of variance for a Latin
square design.

Storage 526 (decimal).

ANALYSIS OF VARIANCE—GRAECO-LATIN SQUARE
To compute the analysis of variance for a Graeco-
Latin square design.

Storage 760 (decimal).

ANALYSIS OF VARIANCE—BALANCED INCOMPLETE
BLOCK

To compute the analysis of variance for treatments
and blocks of a balanced incomplete block design.
Storage 522 (decimal).

ANALYSIS OF VARIANCE— Y OUDEN SQUARE

To compute the analysis of variance for a Youden
square design.

Storage 618 (decimal).

FIRST ORDER DIFFERENTIAL EQUATION—ADAMS’
METHOD
To solve a first order differential equation.

FIRST ORDER DIFFERENTIAL EQUATION—RUNGE-
KuTTa METHOD

To solve a first order differential equation
y=DF(x, y) using the Runge-Kutta method.
Storage 174 (decimal).

FIRST ORDER DIFFERENTIAL EQUATION—MODIFIED
ADAMS’ METHOD

To solve a first order differential equation
y=F(x, y) using a modified Adams’ method with
starting values generated by the Runge-Kutta
method.

Storage 312 (decimal).

FIRST ORDER DIFFERENTIAL EQUATION—HAMMINGS’
METHOD

To solve a first order differential equation
y=F(x, y) using Hammings’ method with
starting values generated by the Runge-Kutta
method.

Storage 304 (decimal).

SECOND ORDER DIFFERENTIAL EQUATION—RUNGE-
KuTTA METHOD

To solve a second order differential equation
y=F (%, y, y) using the Runge-Kutta

method.

Storage 364 (decimal).

14

15

Fig. 4 Selection of Mathematical Routines

Function Routine Timing (psec)** Storage
(decimal)
Complex:
Absolute value CABS 2926.1 27
Add A$55 819.8 35
Add single-precision argument A$52 503.0 20
Conjugate CONJG 307.2 30
Convetrt imaginary part to real AIMAG 79.9 9
Cosine CCOSs 18067.2 14
Divide D$55 6047.0 87
Divide by single-precision argument D$52 2379.8 30
Exponential, base e 7 CEXP 14458.6 42
Load L$55 394 138
Logarithm, base e CLOG 94781 52
Multiply M$55 2731.2 64
Multiply by single-precision argument M$52 12125 32
Negate N$55 345.8 25
Raise to integer power E$51 3094.1 41
Sine CSIN 17047.7 59
Square root CSQRT 7189.4 68
Store (hold) H$55 394 13
Subtract S$55 827.5 35
Subtract single-precision argument S$52 506.9 20
Double-precision:
Floating point:
Absolute value DABS 173.8 11
Add A$66 345.6 553
Add single-precision argument A$62 653.8 12
Add integer to exponent A$81 28.8 9
Arctangent, principle value DATAN 18778.6 134
Arctangent x/y DATAN2 23261.8 56
Clear (zero, exponent) Z$80 10.6 11
Convert exponent to integer Cc$81 125 8
Convert to integer C$61 268.8 4
Convert to single-precision (from pseudo-accumulator) C$62 6.7 5
Cosine DCOS 14385.6 14
Divide A$66 4057.0 553
Divide by single-precision argument D$62 4441.9 16
Exponential, base e DEXP 17441.3 103
Load L$66 355 11
Logarithm, base e DLOG 15522.2 9
Logarithm, base 2 DLOG 14327.0 83
Logarithm, base 10 DLOG10 15526.1 10
DMAXI 1790.4 35

Maximum value

**516 Timing only

16

Function Routine Timing (psec)** Storage
(decimal)
Minimum value DMINI 1791.4 36
Multiply A$66 1081.0 553
Multiply by single-precision argument M$62 1388.2 12
Negate N$66 221 21
Raise to double-precision power E$66 34239.4 16
Raise to integer power E$61 2113.9 38
Raise to single-precision power E$62 34545.6 16
Remainder DMOD 6597.1 20
Sine DSIN 13849.0 116
Square root DSQRT 6108.5 24
Store (hold) H$66 355 11
Subtract A$66 412.8 553
Subtract single-precision argument S$62 745:9 13
Transfer sign of second argument to first DSIGN 191.0 21
Truncate fractional bits DINT 819.8 22
Integer:
Absolute value IABS 14.4
Convert to double-precision C$16 275.5 5
Convert (FORTRAN-generated) to single-precision FLOAT 271.7
Convert to single-precision C$12 256.3 25
Divide D$11 218.9 34
Maximum single-precisibn value MAXO0 336.0 34
Maximum value MAXO0 57.6 34
Multiply M$11 147.8 19
Positive difference IDIM 34.6 19
Raise to integer power E$11 405.1 80
Remainder MOD 410.9 22
Transfer sign of second argument to first ISIGN 34.6 21
Single-precision:
Fixed point:
Arctangent ATNX1 1057.0 36
*Arctangent ATNX2 146.9 33
Cosine COSX1 812.2 5
*Cosine COSX2 53.8 5
Divide DIV 220.8 80
Exponential, base e EXEX1 838.1 75
*Exponential, base e EXEX2 110.4 73
Exponential, base 2 EX2X1 815.0 48
*Exponential, base 2 EX2X2 87.4 46
Logarithm, base e LGEX1 931.2 60
*Logarithm, base e LGEX2 111.4 59
Logarithm, base 2 LG2X1 728.6 3.7

*Operates with multiply/divide option only

**516 Timing only

Function Routine Timing (psec)** Storage
e - SR A S — (decimal)
*Logarlthm base 2 LG2X2 60.5 34
Mu“,]prly - - mpy 1546 74
Round up binary number ROND 87 6
Sine - snxt 8054 30
*Sme _sINx2 470 25
Squareroot soRxx 6758 61
"Squareroot sQRx2 988 60
Floating point: : S -
Absolute value ABS 53.8 9
Add - a$2 2381 184
Arcta-ngent pnnCIple value - -W’i%W”XTi/:Nw”.W - 233§é a '7”7;27728 o
Arctangent, y/x - ~ ATAN2Z 3e470 228
(;e‘n;/e;k(FORTRAN generated) to double p;reglelon JJ:ZW?T?SELE - 771;51167 &
aniv;tiz ;;;;er 7or;runcate fractlonal bits and convert o -
integer) IFIX 293.8 8
Convert pair to complex CMPLX 7 E? - 25 -
Conuert complax Formet Cess sma 9
Converf te doub[e;e;smnWTIﬁTVWW - 7(5$?2767‘ 108 8
Convert to integerw 7 777C$21 - 2525 Y
Divide B - 15$22 10214 B 295
Exponential, brerlrse e .) - 7EXPﬁ# 7 - 43957 - ::TEST%
Hyperbolic tangent I o il:ANH B 7379}5737.5 31
Load 7 ' -) L$22 288 8
Logarithm, base e B ;ALaGV - 38552 o :;QTé{S:ij
Logarithm, base 10 ALOG10 38880 188
Maximum integer value MAX1 1488.0 46
Maximum value VA‘M XXTMW“W - JT{(H 9 4
Minimum integer value MIN1 1494.7 N 47
Minimum value AMIN1 1208.6 47
Multiply M$22 437.8 295
Positive difference DIM 2976 15
Raise to double-precision power E$26 34263.4 17
Raise to integer power E$21 R2499.2 47
Raise to single-precision power E$22 R21522.6 29
Remainder AMOD 2309.8 24
Sine, Cosine SIN, COS 4442.9 140
Square root SQRT 1545.6 71
Store (hold) H$22 33.6 13
Subtract A$22 2419 184
Transfer sign of second argument to first SIGN 71.0 20
Truncate fractional bits AINT 531.8 24
Twos complement N$22 3.6 10
*QOperates with multiply/divide option only **516 Timing only

17

18

SECOND ORDER DIFFERENTIAL EQUATION—ADAMS’
METHOD

To solve a second order differential equation
y=F(x, y, y) using Adams’ method with
starting values generated by the Runge-Kutta
method.

Storage 278 (decimal).

SECOND ORDER DIFFERENTIAL EQUATION—
HAMMINGS’ METHOD

To solve a second order differential equation
y=F(x, y, y) using a modified Adams’ method
with starting values generated by the Runge-Kutta
method.

Storage 464 (decimal).

TRANSPOSE A MATRIX
To transpose an N by N matrix.
Storage 98 (decimal).

MULTIPLICATION OF MATRICES
The multiplication of two-dimensional matrices.
Storage 112 (decimal).

LINEAR MATRIX ARITHMETIC

To perform matrix addition, subtraction and
multiplication by a constant.

Storage 138 (decimal).

EIGEN VALUES AND EIGEN VECTORS
To calculate Eigen values and corresponding Eigen
vectors of a real symmetric matrix.

Storage 780 (decimal).

EVALUATION OF A POLYNOMIAL

To evaluate a single variable polynomial of degree
M.

Storage 48 (decimal).

MULTIPLICATION OF POLYNOMIALS
To multiply any two polynomials.
Storage 104 (decimal).

D1vISION OF POLYNOMIALS

To divide polynomials, retaining the remainder.
Storage 316 (dectmals).

INTERPOLATION—AITKEN’S METHOD

To develop an interpolating polynomial according
to Aitken’s algorithm.

Storage 168 (decimal).

INTERPOLATION—LAGRANGIAN METHOD

To develop an interpolating polynomial by the
Lagrangian method.

Storage 96 (decimal).

DIFFERENTIATION OF A POLYNOMIAL
To differentiate a polynomial of degree N.
Storage 72 (decimal).

INTEGRATION OF A POLYNOMIAL

To integrate any single variable polynomial of
degree N.

Storage 94 (decimal).

REAL ROOT OF A POLYNOMIAL

To find one real root of a given polynomial using
Newton’s method.

Storage 68 (decimal).

RoOTS OF A POLYNOMIAL—BAIRSTOW’S METHOD
To find the real and/or complex roots of an Nth
degree polynomial with real coefficients.

Storage 744 (decimal).

RoOT OF EQUATION—REGULA FALSI METHOD

To find the root of the equation F(x)=0 by the
method of Falsi position (Regula Falsi method).
Storage 334 (decimal).

ROOTS OF EQUATION—MULLER’S METHOD

To find N (complex) roots of the equation F(z)=0
using Muller’s method. The function may be
transcendental and complex.

Storage 490 (decimal).

MATRIX INVERSION, SIMULTANEOUS EQUATIONS,
DETERMINANT

To solve simultaneous linear equations and to find
the inverse (if required) and the determinant of a
real matrix.

Storage 652 (decimal).

SOLUTION OF SIMULTANEOUS EQUATIONS—GAUSS-
SEIDEL METHOD

This standard Fortran IV subroutine solves a set of
simultaneous linear equations using the Gauss-
Seidel Iterative procedure.

Storage 476 (decimal).

GENERATION OF CHEBYSHEV POLYNOMIALS
To generate a Chebyshev polynomial.
Storage 204 (decimal).

SIMPLE LINEAR SORT

To sort numerically a one-dimensional floating
point array.

Storage 110 (decimal).

DUAL LINEAR SORT

To sort numerically a one-dimensional floating
point array, and duplicate the re-ordering in a
second array.

Storage 150 (decimal).

POLAR-RECTANGULAR CO-ORDINATE CONVERSION
To convert Polar co-ordinates to rectangular
co-ordinates, or rectangular co-ordinates to Polar
co-ordinates.

Storage 60 (decimal).

Input/Output Library

Input/output routines are contained in the library
for handling all available input/output peripheral
devices (Fig. 5). Included are the conversion
routines for ASCII to fixed point, floating point
and complex; fixed point to floating point, floating
point to fixed point and complex to floating point.
The I/O library is made up of a set of subroutines
for each I/O device. Each routine permits the user
to specify the data format most convenient for his
application. The I/O routine handles all necessary
code conversion together with error checking and,
where possible, recovery procedures are included.

Fig. 5 Input/Output Library

ASCII Binary

ASR-33

ASR-35

Paper Tape Reader

Paper Tape Punch

Card Reader

Card Punch

Line Printer

Magnetic Tape o*

Disc File ®

*Includes conversion to and from IBM 729 series tape code

Loader Routines

The function of these routines is to load the
memory with object programs from input
devices in either absolute or relocatable format.
These routines are capable of loading the main
program and subroutines called by it or called
by other subroutines, and completes the transfer
linkage between the main program and external
subroutines. This is achieved by generating indirect
address links in sector zero based on addressing
information generated by the DAP-16 assembly
program or Fortran IV compiler. It is the loader
routines that desectorise the memory and which
enable the user to address all the memory as if it
was directly addressable.

19

20

Plotter Software

Included in the I/O library are subroutines to drive
a digital plotter. The subroutines are designed for
use in Fortran IV programs and may be
implemented using the call statements described
below. With this set of programs it is possible

to plot in graphical form any data which may be
represented by a set of X, Y co-ordinates.

Facilities are provided for displaying and
automatically scaling the co-ordinate axes and
writing the necessary numeric scale factors and
alphanumeric captions on the graph. These
subroutines are written partly in Fortran IV and
partly in DAP16 assembly language. The
subroutine names are PLOT, OFFSET FACTOR,
WHERE, SYMBOL, NUMBER, ACCESS,
SCALE and LINE. The PLOT routine changes
the pen position and will draw a line when the pen
is down. The OFFSET routine changes the position
of the origin and provides new scale factors for each
axes. WHERE provides the user with the current
pen position and the current scale factor.
SYMBOL plots all the standard alphanumeric
characters plus 25 special characters starting at a
specified point, at any angle or height.

Utility Programs
Debug Program (DEBUG)

The purpose of this program is to aid the
check-out and debugging of programs by
permitting the user to print out selected areas of
core, delete or insert single words or blocks of
words, enter break-points, initiate jumps or jumps
and halts, and search all areas or part of memory
for references to specify addresses. The storage
required for this program is 628 locations and
will run on either a 316, 416 or 516 system.

Symbolic Source Update Program (SSUP)
SSUP reads symbolic records that are less than 80
characters and permits the user to delete, correct or
insert records to the symbolic source creating a new
revised symbolic source. The user specifies the
SSUP operation by commands which specify the
action required. SSUP requires 1055 locations and
will run on any 316 or 516 having either a high-
speed paper tape reader and punch options or two
magnetic tape units or disc file.

Dump

The purpose of this program is to print out, via

the teletype, selected areas of core in octal or
mnemonic instruction format. Dump requires one
sector of memory (512 words) in which to operate in
Series 16 computers.

Verification and Test Programs

A full package of verification and test programs

is provided with the computer system including
routines for verifying the operation of the central
processor unit, core memory and all available input/
output devices. These routines generate indicative
information reflecting the operational status of the
equipment being verified. The programs are
supplied to suit individual installations.

Summary

Computers: 116, 316, 416 and 516 (except where
stated).

Core Requirements (min.): 4096 words.
Availability: issued.

Free Issue: as standard software

except plotter software.

Plotter software free issue with plotter purchase.

o

-

o

21

Operating Systems
Batch Operating System BOS

To meet the requirements of a wide range of
applications and computer complexes the Honeywell
316 and 516 central processors have available
operating systems which cater for on-line real-time
systems and general-purpose scientific batch
processing. These Series 16 systems are described
fully under their individual headings.

Batch Operating System (BOS)

BOS is an operating system facilitating the
processing of jobs sequentially in batches.
Operating in this manner greatly increases the
utilisation of Honeywell Series 16 computer systems
by efficiently handling the execution and transfer on
completion of the previous job to execution of the
next job in the batch.

Jobs for processing are described to the operating
system by the user through control commands.
These commands direct the execution of

programs and provide a link between the

program and its environment. The system
requirements for BOS are a 316 or 516 central
processor unit with a minimum of 8192 words of
memory together with backing store in the form of
either a moving head disc file or fixed head disc file.
The minimum recommended storage on disc files is
98K words. BOS offers complete and easy-to-use
functions relieving the user of many tedious handling
tasks. Jobs can be run by specifying a job description
through control commands input through a
command input device. This may either be an
ASR keyboard, paper tape reader or card reader.
The user specifies the input/output devices which
are required to process the current job, e.g. for
Fortran IV compilation the source input, object
output and listing output need be specified. This is
done by the ATTACH control command which causes
a particular physical input/output device to be
attached to an input/output stream. An example of
this is to command ATTACH SI, PR connects the
source input stream (SI) to the paper tape reader
(PR). All subsequent calls for source input will
cause the paper tape reader to be used. Devices
remain attached until another ATTACH command
is issued. Stream names are assigned two letter
codes (CI for the command input, SO for source
output, etc.). Similarly input/output devices are
given two letter codes (PR for paper tape reader,
AP for ASR printer, CR for card reader. etc.).

To create a new file on the backing store the user

must give an ESTABLISH command specifying a
file name and specifying whether the information
contained in this file is in source, object or binary
format. Source information is terminated by an
end-of-file record or the next control command,
and object information must be terminated by
end-of-file record.

Storage of files on the backing store devices are
allocated automatically by the operating system
BOS allocates storage in a manner which achieves
the best utilisation of memory on backing store by
reading/writing in blocks of 95 words. Blocks are
chained together to form files, the disc unit is
divided up into two areas at system generation time,
one being system files, the other user files. File
directory specifies the storage allocation for
particular files. It is also possible at system
generation to specify an area of disc file not
accessible to BOS. This area is utilised for special
user programs. The system files include all standard
software, DAP-16 assembler, the Fortran IV
compiler, mathematical and input/output library
routines and utility routines. The users may create
additional system files simply by naming these files
with a label ($ character). The user may make a
new file by combining one or more files by a
MAKE command, in this way a specialised program
library is created for his particular application.

For a DAP-16 assembly job, the control command
DAP followed by parameters that specify the name
of the source file to be assembled, and the file name
for object output and listing, causes the DAP-16
assembly to be loaded from backing store into
memory and executed. On completion of this
process DAP-16 will have produced an object file
and listing file. The object file may be subsequently
loaded by a LOAD command. An errors only listing
may be obtained by output of the listing file to the
error output stream or a full listing by output to the
source output stream. In a similar manner a
Fortran IV compilation is specified by a FORTRAN
command with similar parameters specifying the
source, object and listing file names. Execution of
this command produces a one-pass Fortran
compilation, creating an object program and a
listing in the files specified. Options may be
specified to produce an expanded listing including
octal information or to insert trace code where
possible. If the source file contains a Fortran IV
main program this must precede any

sub-programs or function sub-programs. The
object file produced by the compiler may be loaded
by a LOAD command. An object file containing the
main program must be loaded first. A listing may
be produced by output of the listing file to the
source output stream. To load an object program
resident in the disc file the user executes a LOAD
command causing control to be transferred to the
system relocating loader. This causes the loading of
job files named in the parameter list following
LOAD command to be transferred from backing
store into core memory. Optional parameters are
available specifying the base address in sector zero,
the initial address of the program and the

common base address. Other parameters specify a
core map to be generated in a named disc file and
to execute a program on completion of loading,
starting at START address obtained from the
memory map. An additional parameter to the load
command is DEBUG. Appearing as the last
parameter, causing the DEBUG package to be
loaded into core and control to be transferred to the
ASR keyboard where DEBUG command
operations may be typed. The BOS command
UPDATE calls in the updating sub-system to update
the existing file (or old master) to produce a new
file (called the new master) by updating instructions
in the update master. The commands in the
updating master are written as for the Symbolic
Source Update Program (SSUP), enabling the
users to create a source program on disc file
without having to input or output programs on
paper tape or cards.

Example of a Complete Job

The following example shown in Fig. 6 illustrates
how source programs and control commands may
be combined to perform various complete jobs. The
example illustrated here is in the form of cards but
could equally well be read through punched paper
tape. In the example source input is

assigned to card reader and source output to the

line printer. The job name is FORTEX, the
information on the job card being printed out

on the line printer. The Fortran IV main

program, function and sub-program source

card decks are all stored in a file FS, and then an object
compiled to give a object file FO, and a listing file FL.
The program listing is output on the line printer,
the object file FO is loaded followed by the system

23

24

Fortran Compilation and
Execution

Next card

$LOAD FO, $SL, "EXECUTE

$OUTPUT FL, SO

$FORTRAN FS, FO, FL

FORTRAN subprogram source deck

FORTRAN function source deck

FORTRAN main program source deck

$ESTABLISH FS, SI

$JOB FORTEX 16.1.69 RLS 25917

$ATTACH SO, LP

))2 22)))))

$ATTACH SI, CR

library. The program is then started at the first
executable instruction in the main program.
When the program is finished the Fortran IV
statement CALL EXIT will be obeyed and the
operating system will continue as directed by the
next control command.

Summary

Computers: 316, 516.

Core Requirement (min.): 8192 words.
Backing Store (min.): 98K words.
Availability : released.

Free Issue: with appropriate purchased
configuration.

Executive16
EXEC.16

EXEC-16, a Honeywell dedicated core executive
operating system, has been developed to provide the
user with a minimum-size real-time executive
multi-programming capability. EXEC-16 runs on
the H316 or 516 central processor and user
programs are written in DAP-16 assembly
language, using the Standard DAP-16 Assembler.

Features

Multi-programming

Every program running under EXEC-16 is
described within the executive in the program
library and can be requested from the console or by
another program. The priority of the program

is defined by its position on the list allowing several
programs to run concurrently and their

associated input/output operations to proceed in
parallel.

Scheduling

The Honeywell EXEC-16 determines which
program is to be executed next, system

programs are checked in order of priority to
determine which are currently due and are executed
in order. Multi-programming capability is provided
by the executive as a result of hardware interrupts.
The executive searches the list of programs in

the program executive tables in priority order, as
determined by its position in the table. A
maximum of fifty programs are allowed in the

basic system.

Programs can become due either on demand from
another program, a request through the

keyboard, or from a set time interval elapsing in one
of the three basic timing intervals. Regardless of
how the program becomes due, all programs

are started under executive control from the
executive table list priority. Therefore, the user may
plan his executive table list with relative

importance to the overall system operation.

Device Handling

The input/output devices are associated with a priority
interrupt and any and all such devices are accessible
by any program within the system. When a
program requests one of these devices, assuming

the device is not busy, EXEC-16 gives the exclusive
use of the device to the program requesting and
continues the program. If the device is busy, the
request is queued, first-in-first-out, and the

program requesting the device is suspended.
Assuming the device becomes available, the
program previously suspended is now
rescheduled for execution with the input/output
device available to the program.

Interrupt Handling
One of the major hardware features of a real-time

computer system is its priority interrupt capability.

When a priority interrupt is received the contents
of key system locations and registers are saved in
order to return control easily to the interrupted
program. The ‘interrupt mode’ program
associated with the priority interrupt is then
executed. When the ‘interrupt mode’ program

is complete, control is returned to EXEC-16 in
order to determine whether to continue the
interrupted program or execute a program of
higher priority which may now be due.
Execution of the uset’s priority interrupt code
commences approximately 100 cycles after the
interrupt has occurred. (100 cycles represents
worst-case response time, provided interrupts were
not disabled when interrupt actually occurred.)

Program Organisation
In writing real-time programs, the program
structure becomes a very important consideration.

A program can be divided into two types of coding:

Non-Interrupt Coding

This coding is executed in non-interrupt mode and
is always initiated from the scheduling action of
EXEC-16. (Coding can include several independent
blocks of coding each identified by a label and
ending in a statement returning control to the
executive.) Each label defines a re-entry point in the
program and non-interrupt blocks need not be in
any specific order other than the initial entry block
(first block).

Interrupt Coding

On requesting use of a device, assuming availability,
the requesting program provides EXEC-16 with
the label indicating start of interrupt coding to be
executed on receipt of that device interrupt. The
executive is then responsible for linking that device
interrupt to the block of coding and subsequent
execution of coding in interrupt mode when the

25

26

interrupt is generated. Coding is completed by a
statement returning control to the executive, no
strict ordering is required for interrupt blocks, and
a program may have as many interrupt blocks as
devices it requires.

Time Management

The real-time clock, a hardware interrupt, in the
system is set at 100 millisecond intervals. From this
interval three basic timing intervals are established:
100 milliseconds, 1 second, and 1 minute. The
basic timing intervals are updated and checked to
determine if programs linked to these intervals

are due for execution. If any program is due, the
status is recorded in the executive table list, and the
time interval for that program reset to its original
value.

Keyboard Service

The following functions with their descriptions and
formats are available to the user through the ASR
teletype:

Enter Time: ET, HOURS, MINUTES.
This function sets the real-time clock in hours and
minutes.

Display Time: DT.
This function prints the current system’s time in
hours and minutes on the ASR Teletype.

Request Program: RN, NN=Name of Program.
This function allows the user to selectively start
any user program contained in his executive
table list.

Enter Core: EC, CORE LOCATION, CONTENTS
OF CORE LOCATION.

This function allows the user to change any core
location.

Display Core: DC, STARTING LOCATION,
ENDING LOCATION.

This function allows the user to display on the
ASR Teletype any core location.

Hardware configuration

Minimum requirements

H316 or 516 Computer with 4K of core memory,
Real-Time Clock.

One input/output Typewriter.

(Teletype Model ASR-33 or ASR-35.)

Optional items:

One high-speed paper tape reader.

One high-speed paper tape punch.

Additional core memory capacity to a total of 16K.
Real-Time Interface

One Alarm Typewriter.

One Logging Typewriter, Model ‘B’.

One Operator’s Console.

One Moving Head Disc, operating with the DMC
Option.

The absence of a standard option from the above
listed options does not necessarily preclude it from
inclusion with EXEC-16.

Summary

Computers: 316, 516.

Core Requirement (min.): 4096 words.
Availability : released.

Issue: subject to configuration charge.

Interpretive Executive

INTEX

INTEX is a small real-time executive for H316,
416 and 516 computers with 4K memory systems.
This Honeywell program is capable of
scheduling any number of system programs and
will execute any number of system programs in
parallel. It requires that the system programs are
written in a systematic and definite method.

Features

Interpretive Function

The system programs are written in a definite
format. Each format block is interpreted by
INTEX and executed. The executive will not
proceed to the next format block of the program
until the previous one has been completed.

Parallel

During the execution of the format block of a
particular program, spare processor time may be
available. In such a case INTEX will search for
other programs to execute, thus several system
programs are capable of operating in parallel.
There is no limit to the number of programs
operating in this manner.

Software Program Timers

Each system program contains its own software
timing location. Thus each program is capable

of being suspended for a desired length of time.

Input/Qutput

All input/output drivers are subroutines of the
executive. Each system program contains the
demanding formats, but all scheduling and priority
allocation remains the task of INTEX.

Executive Organisation

Honeywell’s INTEX has been written in a
completely modular concept. Routines may be
added or omitted with ease in order to expand or
contract its capabilities. The executive always
contains three areas:

Input/Output Library.
Basic Routine Library.
Basic INTEX routine.

Re-entrant Capabilities

System programs, because of their special format,
are completely re-entrant and also recursive, thus
enabling a tremendous amount of saving in core
space when several operations are identical except
for parameter differences.

Basic Intex routine

The basic INTEX carries out the following
objectives:

Schedules each main system program.
Organises the program format block into
relevant data areas.

Calls all relevant executive routines from the
executive library.

Scheduling

When a program is discovered to be in an active
mode the pointer is used to access the program
blocks. This and all subsequent blocks are then
executed until a natural or forced program break

is reached. Once the break has been encountered
the executive continues scanning the program

table and the process is repeated. Due to both the
speed of the computer and, in exceptional cases,
forced breaks, the overall resolution of the executive
will not exceed in the worst case 500ms or 880ms on
H316. Hence the executive is capable of driving
several programs virtually in parallel; however,

due to the scanning procedure there does exist a
priority structure whereby higher priority

programs can be given preference.

Stack Nest

An INTEX routine inspects the program block and
organises it into a data area for that particular
program. This data area is termed a Stack Nest.
The program block consists of a number of
parameters stored in the stack nest, from the top
downwards and from the bottom upwards. The
CALL word transfers control from the main
program to the basic executive library routine.

The latter then accesses the stack for its

parameters and acts upon them.

It is interesting to note that this example is only one
step in what could be a subroutine chain; as long as
the final link is a basic executive library routine
there is no theoretical limit to the depth of the
subroutines written in the format block method.
The practical limit depends on the capability of the
stack nest to store all the required subroutines. A
storage space of 64 locations is allocated for normal
usage, though the stack nest levels fluctuate during
program execution. Thus the final size of the

stack nest required for a given system is
determined during the checkout time of the specific
system so that the worst case can then be taken into
consideration.

27

28

Basic Executive Routine Library

Because of the interpretative nature of the executive
the final onus of INTEX is to execute the program
demands. All such routines are contained in the
Basic Executive Routine Library and can be
expanded or contracted to meet the system
requirements. The routines are written in machine
code and access parameters from the stack nest.

Routines available can be summarised as follows:

Program Control Functions.

Boolean Algebra Packages.

Integer Arithmetic Packages.

Time Control Routines.

Input/OQutput Library

In a real-time system, input/output techniques
involve the use of interrupts. In order to control
these interrupts, the philosophy of the executive
demands the input/output drivers to form part of
its library.

Input and Output formatting and demands are
written as part of the user programs and

interpreted by the executive, queued on the first-in,
first-out basis. Most of these routines are written

to customer specification; however, the Real-Time
Clock and teletype handler are standard and already
available.

Summary

Computers: 316, 416, 516.

Core Requirements (min.): 4096 words.
Availability : January 1970.

Issue: subject to configuration charge.

On-Line Executive for
Real- Time OLERT

On-Line Executive for Real-Time is a software
package which forms the basis for Real-Time
Multi-programming on the DDP-516 computer.
OLERT provides scheduling, memory allocation
input/output and other functions required for
foreground/background multi-programming
operation. Programs can be written for OLERT
using either the DAP-16 assembly language or
Real-Time FORTRAN IV. Source programs can
be assembled or compiled in the off-line mode or,
as a background function, under the control of
OLERT using the on-line versions of DAP-16 and
Real-Time FORTRAN IV. The object programs
are in the OLERT formats linked into the system
using either the on-line or off-line version of the
OLERT system loader.

Fortran Cempatibility

The user can write all of his programs in
FORTRAN, including real-time input/output,
interrupt response and time sequencing. OLERT
programs carry out the real-time commands of
Real-Time FORTRAN IV. This provides faster,
simpler and less expensive solutions to programming
problems.

Optionally, programs may be coded in the
DAP-16 assembly language using standard calling
sequences for linkages to the main executive.

Memory Efficiency

Re-entrant programs need appear in core only
once for all users. They can be interrupted while
being used by one program and then re-entered
for use by other programs. Because of the

method used to obtain this feature, there is virtually
no limitation to the number of times such a
program can be re-entered. This technique can

be used to provide re-entrancy for a user-produced
program which can be added to the permanent
subroutine library.

Multi-programming Capability

OLERT can handle many concurrent real-time and
background programs. The number is limited

only by the memory capacity of the computer and
peripheral devices.

On-Line Program Development

OLERT permits compilation, assembly, or loading
and linking of programs and subroutines on-line.
The operator can restructure the user software and

can start and stop programs while other
programs are being executed. On-line debugging
is performed using the TRACE feature of
FORTRAN IV.

Interrupt Handling

High priority interrupts are recognised and serviced
during the servicing of lower priority interrupts.
This ensures rapid response to emergency
conditions.

Adaptability to changing process conditions is
provided by the ability to change interrupt action
during execution.

Executive Control

OLERT schedules the execution of programs by
priority according to interrupt response, time,
program requests, operator requests, OLERT
provides disc and core memory management.

Input/Output

OLERT controls and executes all input and output
operations. Editing is provided for all data formats
(floating point, integer, ASCII, etc.) used with
FORTRAN IV I/O statements. Devices are
referred to symbolically, permitting checkout of
special I/O on standard devices without
reprogramming.

29

30

System Protection

OLERT uses the hardware protection features of
the DDP-516 computer to prevent program
errors from upsetting the entire computer system.

Memory protection prevents a program error

from altering the memory assigned to a protected
program. Errors are trapped and the operator is
notified of the offending program and its

location. Privileged instruction protection prevents
the execution of input/output and other control
instructions by those programs which are not
allowed to use them.

Modularity

Only those portions of OLERT which are necessary
for a particular system need be included. This
reduces memory requirements for those applications
which do not require all the features of OLERT.

Structure of OLERT

The basic OLERT package contains a scheduler, an
interrupt handler, a clock-timer controller, an I/O
request processor and a driver program for the
Model ASR-33 or ASR-35 I/O teletypewriter.

Scheduler establishes the order of execution of
user programs which have been scheduled or
requested by other programs. Interrupt
Handler controls the recognition and dynamic
assignment of priority interrupts.

Clock-timer Controller module maintains the
time-of-day and elapsed-time counters, and passes
control to user programs on the basis of

assigned times and time intervals.

I/O Request Processor controls the assignment of
peripheral devices to user programs and controls

the flow of data between the user’s programs and
the devices.

ASR-33, ASR-35 and Other Device Drivers are
the interrupt-response programs which directly
control the peripheral devices and pass the data
between core memory and the devices. The driver
programs for standard I/O devices are all
interrupt-driven and designed to operate
peripherals at or near rated speeds.

Other, optional, programs are re-entrant

arithmetic package, re-entrant I/O editor, on-line
program loader, record handler, file handler,

disc driver. Some system functions are also optional.

Re-entrant Arithmetic Package, which includes
single-precision floating and fixed-point, add,
subtract, multiply and divide, is coded re-entrantly
and can be interrupted and restarted for a higher
priority user. The machine state is saved for
restarting previous activities.

Re-entrant I/O Editor provides conversions for
all data formats which are available with
FORTRAN IV I/O statements. These include
floating binary to decimal, integer binary to
decimal, binary to alphanumeric (ASCII), double-
precision binary to decimal, etc.

On-Line Loader accepts user programs in
OLERT format and adds them to the system
without disturbing concurrent computing activities.

Record Handler allows user programs, which
are protected from each other, to pass data records
using normal FORTRAN IV READ OR WRITE
statements and formats. The OLERT record is a
table of consecutive core locations used for passing
data from one program to another. This

provides a convenient means for program-to-
program communications as well as memory-to-
memory data conversion. The transmission of data
through these records is shown in Fig. 7 by
programs A, B and the record handler

program.

File handler permits user program to transfer
blocks of data between named files in bulk storage
and arrays in core memory. Communication with
the file handler program can be done using
FORTRAN extension statements.

OLERT Disc Driver is the interrupt-driven
software interface between the bulk storage device
and the OLERT schedule and user programs.

Systems Functions allow the operator to
communicate with the scheduler program

through the ASR teletypewriter input/output
keyboard in a conversational mode. The following
operations are provided: call the on-line loader,
assign memory, assign software priority level, print a
memory map, print program library, initiate a
program, abort a program tree, delete a

program tree, delete a program from disc.

Fig. 7 1/0 and Records

A

900000000000

0000000000000

s000000000

©000000000000000 000

00000000000

Program A is passing data to several |/O devices, and
also to program B using ““records”. The data is formatted,
converted to characters and passed on to the appropriate
drivers by the /0 editor.

The I/0 processor ensures that the correct device is
associated with program A at the proper time, that no
other program can interfere with the flow of information
to this device while program A has control, and that the
data from program A reaches the correct driver for this
device.

31

32

Structure of User’s Programs

Interrupt/Noninterrupt Block Structure—
Programs can be separated into blocks. The rules
of formation for blocks are given under the ‘Real-
Time Extensions’ section on page 35. The first
portion of a program, which is initiated as a

result of a request from either the I/O typewriter or
another program, is called the ‘noninterrupt
block’. In many cases, this is the entire program.
Additional blocks of instructions, which are
executed following an automatic interrupt or an
elapsed time interval, are called ‘interrupt blocks’.
When an interrupt block is entered, all system
registers and status indicators are saved. When the
execution of interrupt code is complete, the
scheduler restores all operating conditions and
returns control to the highest priority program
which is waiting to be executed. The interrupt
blocks should have short execution times for most
efficient operation.

Program Levels—The Scheduler establishes
the order of execution of user programs

requested by other programs or initiated by the
operator. These programs are ordered by level on
the basis of user-assigned priority (Fig. 8). Levels
provide a software-based priority similar to that
provided by hardware interrupts. As many as nine
separate priority levels can be provided for each
system. Within each level, programs are
scheduled on a first-called first-run basis. A
program is assigned a level when it is called for
execution either by a central I/O typewriter
command or by another program.

Program Trees—While level defines the

relative priority of a program, the grouping of
programs by tasks or function is defined by the
task tree structure. The tree is used to determine
the memory protection boundaries and command
data requirements for programs involved in the
same job. For a particular job, programs of
different levels can be grouped into the same tree;
however, any of the programs in the tree will be
automatically assigned to a level which is the same
or lower than that of the original program
initiated from the I/O typewriter.

Program Initiation and Control

Interrupts—A program’s execution can be
temporarily suspended by a hardware priority

interrupt, the initiation of a program at a higher
priority level, or by reaching some impasse such as
waiting for input. As higher priority programs

are completed and as input/output requests are
serviced, the suspended program’s executions are
resumed.

The statement CONNECT is used to associate a
block of user-generated code with a particular
hardware interrupt. Whenever that interrupt occurs,
the block of code will be executed according to the
priority of the associated interrupt line.

Clocks and Timers—The real-time clock is
considered a special case of the hardware interrupts.
The CONNECT statement is also used to cause
initiation of blocks of user code ecither at a particular
time or at specific time intervals.

The statement DISCONNECT removes the
association between a block of interrupt code and
the interrupt, clock or timer.

Initiation of Noninterrupt Blocks—A program
in an OLERT system can consist of a main or
noninterrupt block of instructions, usually
computational, and several associated interrupt
blocks which are usually I/O oriented.
Computations in the noninterrupt blocks, as
indicated by labels, can be scheduled by a schedule
statement, typically within an interrupt block. The
SCHEDULE statement is also useful for selecting
alternate or multiple paths as the result of
program decisions. It is meaningful only within a
program, that is, program A cannot schedule a
label in program B.

The REQUEST statement is used by a program
to request execution of another program. This
statement also provides the ability to pass
parameters to the requested program. The

calling program can assign a level to the

requested program for the sake of establishing
relative priorities. This is done by adding the
assigned level number to the statement. Requests to
execute a particular program can be made in one
of two modes: sequential or nonsequential. When a
sequential request is made, control passes from the
requesting program to the operating system and

is not returned until the requested action is
completed. When a nonsequential request is made,
control remains in the requesting program until
the program is interrupted or voluntarily

releases control.

Fig. 8 Level and Tree Structure

Higher Priority

Level and tree
Assignment

T |
-
b [|
2 | I
Program I |
Level N | |
3 I
| |
[|
Program l - l
Level N-1 | l
| I
| I
| !
| |
— | I
| Memory |
Program l protect
Level 2 boundary I
L | I
. | |
| [\1s
Program | ‘—/ '~
Level 1
| | Vviolation
oy . I | Attempt
| | L] | I
Tree No. 1 Tree—2 Tree No. M
(Contains all programs associated (Contains all programs associated
with task No.1) with task No. M)

Programs A, B, Cand D (Tree No.1) are all involved in the
same job. A, B and C are all high priority programs while

D islow priority.

Tree No.2 involves a single-program task — Program E.
Program H has attempted to modify the memory of

another tree. The attempt has been trapped and the tasks of
Tree No.M will be aborted. The operator will be notified by a

violation message.

33

34

Input/Output—Input and Output operations are
requested through FORTRAN IV READ and
WRITE statements or their equivalent DAP-16
calls. Both READ and WRITE statements can be
sequential or nonsequential like the REQUEST
statement. Input or output can also be requested on
a different priority level than that of the calling
program. A symbolic device name can be

assigned to an actual device by the DEVICE
statement.

A program can obtain exclusive use of a device
through the ATTACH statement. In this case, no
other program is allowed to use the peripheral

until the command DETACH is given. The current
status and availability of a specific I/O device can be
found by using the STATUS statement.

Record devices are core areas which can be treated
as though they were devices. They are a convenient
method of passing data between programs and
trees, and performing internal formatting. The
same READ, WRITE and FORMAT statements
used with actual devices are used with these
pseudo-peripherals.

Standard FORTRAN IV FORMAT statements can
be used to describe the editing desired on the input
or output data.

Pending Event Test—At any time during the
execution of a program, the programmer can use
the TEST PENDING statement to determine
whether any action requested, such as input/output,
is still to be completed. If such a status test is made
and requested actions are incomplete the program
will be suspended and control will return to the
scheduler. When the actions have been completed,
the program will be resumed. If all pending
requests have been completed the program can
optionally continue or terminate.

Memory Management—The disc provides
storage for the System’s program library as well
as bulk storage for the programs. A map of disc
and core utilisation is maintained by the memory
allocator, which assigns areas on disc for
program data files. Disc files can be named and
are either private to a single program, or public
to many programs. Information is transferred

to or from these files by STORE or FETCH
commands.

-
-
-
-
-
-
4
-
i
-
-
-
-
Q~
&
L
L
»
L
L
o
- ®
L
®
@
&
®
L
L
L
L
@
L]
pre
-

®
@«
@
L
9
L
®
s
®
L
L
8
i
®
®
.

L
-

000000 00CBBIILSTS

60060000

s0c00000

L

0 5 0 0 0 0 0 000000000060 008N EEEE N

Memory and System Protection—The memory
lockout feature of the DDP-516 computer is used to
prevent programs involved in one job from
interfacing with programs involved in another

job. Each tree contains its own protection
boundaries.

OLERT maintains control over the memory
protection system by setting the proper hardware
masks to establish protection boundaries, by
activating the restricted execution mode, and by
interpreting the attempted execution of a privileged
instruction or memory protection violation. A tree
will be involuntarily cancelled if a program in its
structure attempts to execute a privileged instruction
or to write in a protected area of memory. If this
happens, the operation will be notified via the I/O
typewriter.

Relocation—The relocation feature of OLERT
allows a program to be loaded from bulk storage

or paper tape into any available block of contiguous
512-word core sectors for execution. The

program must start on a sector boundary.

Operator Communications—The operator
communicates with OLERT through the I/O
typewriter keyboard. He can request loading of a
user’s program via the on-line system loader. He
can also delete programs or trees when necessary.
The system loader allocates core at load time,
eliminating much of the record keeping normally
required of the programmer. The loader also
constructs and maintains a program library
containing the programs which have been
entered in the system.

Real-Time Extensions to Fortran IV

The following four statements illustrate the function
of the additional real-time extensions to FORTRAN
IV. There are 34 additional statements. For each
Fortran IV extension statement there is an
equivalent DAP-16 calling sequence so that the
same operations can be carried out when coding in
assembly language.

Request

The REQUEST statement causes the execution of
another program to be scheduled. If the

requested program is on disc, a copy is

transferred to unoccupied core sections for execution.
Only one copy of a program need be on disc, but

a copy will be made in core for each tree.

REQUEST PROGRM (AI ... AN)PROGRM is
the name of the requested program and A7 . . .
AN are arguments which are treated in the same
way as FORTRAN subroutine arguments.
Following the REQUEST statement, when
execution of the program PROGRM is finished,
control returns to the next statement in the calling
program. It is a sequential statement.

Connect

CONNECT INTERRUPT ACTION (3).

This associates an interrupt’s with a program’s
interrupt block. ACTION will be initiated
whenever interrupt 3 occurs. Special cases of the
interrupt blocks are the clock blocks. These are
initiated as the result of elapsed or absolute time.

Schedule

SCHEDULE 200

Causes the portion of the program starting at the
statement with the label 200 to be scheduled for
execution by the operating system.

Attach/Detach

ATTACH (OPERIO)

Assigns exclusive use of the device OPERIO to the
calling program. No other program can use

that peripheral until the command DETACH
(OPERIO) is given.

Interrupt Response

The elapsed time for the sensing of an interrupt to
the execution of the first instruction of an
interrupt associated program is nominally 100
microseconds and can reach a worst-case value of
300 microseconds.

Hardware required and supported

Minimum hardware requirements for OLERT are a
24,576 word DDP-516 computer with the memory
lockout option, real-time clock, ASR-33
teletypewriter and fixed head disc. The basic
OLERT system can be expanded to accommodate
memory sizes up to 32K, priority interrupt option,
high-speed paper tape reader and punch.

Summary

Computer: 516.

Core Requirements (min.): 24,576 words.
Backing Store (min.): 98K words disc file.
Availability : issued.

Issue: subject to configuration charge.

36

Digital /Analogue
Simulation MIDAS

Midas
The most common scientific and engineering
problems involve a study of the behaviour under
specified conditions of dynamic systems. It is
desirable to simulate the behaviour of a proposed
system by means of a mathematical model. The
behaviour of a dynamic system is obtained by
solving the equations which describe that system
and analogue or hybrid computation systems offer
a convenient method of simulating the system and

 thus implementing the solution of the system
equations.
Dynamic systems are in general only described
adequately by a set of non-linear differential

~ equations of such complexity that analytical
techniques are not possible and probably not
desirable; thus numerical methods developed for a
digital computer offer the only alternative.
System simulation languages are used currently to
Julfil two main purposes:

The independent solution of system equations in
order to verify or increase the accuracies of results
obtained from an analogue or a hybrid computer.

The solution of system equations on a digital
_computer whilst still retaining the programming and
operational conveniences of the analogue and

hybrid computational techniques.

The Series 16 MIDAS program provides a Iarge
number of operational elements such as would be
found on an analogue/hybrid computer. These
elements include integrators, summers, multiplier,
relays, inverters and many others which have specific
input/output relationships.

Programming by means of MIDAS consists

basically of ‘interconnecting’ these elements so as to

set up the equations describing the physical system
under consideration. This is entirely analogous to the
use of a patchboard system on an analogue
computer for the interconnections of the electronic
operational elements. Just as it has been proven
essential to the analogue programmer to prepare a
schematic or flow diagram to indicate the elements
and their associated interconnections, a very similar
form of block diagram is useful as a first step in
preparing a MIDAS program. Next a listing is
prepared from the block diagram specifying for each
element the source of its inputs. This listing is
prepared according to a few simply defined rules in
input format. With the addition of several other
items of information such as a calling sequence,
numerical data, etc., the programming is complete.
Thus the user requires no computer experience to
be able to utilise MIDAS. Fig. 9 gives a summary
of the MIDAS elements available.

Summary

Computers: 316, 516. ,
Core Requirements (min.): 16,384 words.
Availability ; released.

Issue: subject to configuration charge.

37

38

£

Fig.» 9 Summary of Midas Elements

Item Name Inputs Qutputs
1. Mathemaftical Operations
s £
Integrate. i A { Adt+IC
Sum Sj Ai(i=1,2,..K<6) K
S A
i=1
Negative NEGj A =A
Multiply Mij or Pj A B A.B
Divide Dj A B A/B
Absolute Value ABSj A (A)
Square Root SQRj A YAforAx 0
Exponential Ej A A
Natural Logarithm LNj A In AforA> O
Resolver RES] A B output = sin A (Nofe: A must bs in
C output = cos A radians)
Arc Tangent AT} A tan~1A where ~TT < tan~! A<TT
2 2
2. Swiitching Elements B>0i{B<0
Qutput Relay DRj A B Coutput|{ A 0
D output 0 A
Input Relay IR} A B, C C>0|C<0
: Output A B
Function Switch FSWj A B, C D D>0|D=0/D<0
Output A B
» A>B|C<A<B|A<C
Limiter LIMj A,B,C, Output B A Cc
A>0]A<0
Bang-Bang BBj A B Output | B -B
A>BIC<AgBIA<C
Dead Space DSj A, B,C Qutput A-B 0 A-C
3. Arbitrary Functions
Function Fior DFGj | A, Data Lines | f(A) Linear Interpolation ; Data forevery run.
Constant Function Gi A, Data Lines | f(A) Linear Interpolation; Data for first ru
only. :
Curve Follower CFj A, Data Lines | f(A) Quadratic Interpolation ; Data for every
run.
Constant Curve Follower CGj A, Data Lines | f(A) Quadratic Interpolation: Data for first
run only.
4. lterative Element
Implicit Function IMPj A B
5. Run Termination
Finish FIN A B Stops computation when A > B
6. Insertion of Numerical Items
Constant CoN Data Lines | 1 to 6 items/line. Data for first run only.
Parameter PAR or K Data Lines 1 to 6 items/line. Data for every run.
Initial Condition ic Data Lines 1 to 6 items/line. Non-zero 1C’s for every
run.
7. Special Statements
Header HDR — 1 to 6 items/line. Provides titles for the
readout.
Readout R@ e 1 to 6 items/line. Specified items to be
printed.
End END — Signifies the end of the symbolic program.
8. Special Names
independent Variable IT — Current value of the independent variable.
Time between Readouts TR — 0.1 units of the independent variable, usuaily
time, unless otherwise given on a C@N
or PAR line,
Minimum Interval of Integration | MINI ~— 1077 unless otherwise givenona C@N or
° PAR line.
Integration Option gPTIQ' Nj - Specified a non-standard integration option.
PTlj

THE QUEEN'S AWARD

loneywell

United Kingdom
Honeywell Ltd.,

Computer Control Division,

53 Clarendon Road,
Watford, Herts.

B Watford 42391
Telex: 934227

Honeywell Lid. -

Computer Control Division,

Honeywell House,
Station Road,
Cheadle Hulme,
Cheshire.

& 061-4856116
Telex: 66509

Honeywell Ltd.

Computer Control Division,

Observatory House,
Windsor Road,
Slough;, Bucks.

& Slough 33366
Telex: 84601

Sweden
Honeywell AB,

Computer Control Division,

Storsatragrand 5,
127 86 Skarholmen,
& 08/838 00 00,
Telex: 854-10673

Finland

0Y Honeywell,

Hitsaajankatu 5,

Helsinki 81,

a® 730311
Telex: 12-1229

France
Honeywell S.A.,

Computer Control Division,

92 rue de Courcelles,
Paris 8eme.

B 267 4435

Telex: 29623

Germany

Honeywell GmbH,
Computer Control Division,
6050 Offenbach/Main,
Kaiserleistrasse 55.

@ 30641

Telex: 41-52758

Honeywell GmbH
Computer Control Division
4 Diisseldorf

- Moersenbroicher Weg 200

= 62161
Telex: 858 6754

Netherlands

Honeywell NV,

Computer Control Division,
Rijswijkstraat 175,
Amsterdam.

R 020-159343

Telex: 13066

Switzerland

Honeywell AG,

Computer Control Division,
8008 Ziirich,

Dufourstrasse 47.

= (051) 47.44.00

Telex: 53.561

Honeywell AG

Computer Control Division
1200 Geneva/Switzerland
73, Route de Lyon

® 44 2550

Telex: 22 670

*ltaly

Honeywell S.p.A.,
Computer Control Division,
Via V. Pisani, 13

1 20124 Milano.

T 6245

Telex: 32092

Other countries
export

Honeywell Ltd., -
Computer Control Division,
53 Clarendon Road,
Watford, Herts.

® Watford 42391

Telex: 934227

.. Designed ang printed in U.K. by Copia. Productum, Harrow

