Honeywell OP-16
USERS GUIDE

'SERIES 16
SOFTWARE

Doc. No. 41286103020C

OP-16
USERS GUIDE

SERIES 16

SOFTWARE

Doc. No. 41286103020C

Honeywell reserves the right, at any time and with-
out notice, to change any information contained
herein. Unless agreed in writing by Honeywell,
this publication will not form part of a contract.

Originated by HCO Technical Publications Department

For further information write to:

HONEYWELL iINFORMATION
SYSTEMS LIMITED,

Hemel Computer Operations,

Maxted Road,

HEMEL HEMPSTEAD,

Herts.

Tel: Hemel Hempstead 2291
Telex: 82413

Cable: HONEYWELL

May 1973

Honeywell information Systems Limited © 1973

(ii)

Page 8-18, Para b

Delete this paragraph and insert the following:

ERRATUM

5. After loading the Fortran programs, load the Fortran System Library tapes with

the OP-16 Fortran Library tapes in the following order.

Title

CLIB
DLIB H-W

or

DLIB S-W

OPFRTI1
OPFRT2H

IRLIB H-W

or
IRLIB S-W

OPFRT2S

OFPFRT3
ULIB

ACI

Document No

41286969-521
41286971-521

41286970-521

70182903000
70182904000

41286973-521

41286972-521

70182905000

70182906000
41286974521
70180717321

Condition

If hardware arithmetic option

is present.

1f hardware arithmetic option
is not present.

Torce load the first routine (SYSCAL)
and standard load the remaining
routines if re-entrant Math
Subroutines are used.

If hardware arithmetic option
is present.

If hardware arithmetic option
is not present.

If re-entrant Math Subroutines are
not used.

REVISION HISTORY

UK Doc. No.

Rev.

Date

Derived From
US Doc. No.

ev.

41286103020

July 1972

70130072404

(iii)

PREFACE

This manual describes the Op-16 Operating System and the RTX-16 Executive

for the Models 316 and 516. Separate manuals describe Op-16 options.

Section I provides a brief description of Op-16 features, components, and

configuration requirements, and RTX-16 functions and construction. The remainder of this

manual is organized as follows:

The

Section II: describes the RTX-16 Dxecutive, its modules, and its functions.

Section I1I: describes the System Function calls and how to use them from a
user program.
Section IV: describes the components of the Configuration Module and gives

rules for its assembly.

Section V: describes the utility programs and device drivers.

Section VI: gives rules for writing Op-16 user programs.

Section VII; describes the procedure used to generate an Op-16 system.
Section VIII: describes additional options available to the Op-16 user.

Appendices: list the memory segments, and Executive interrupt reference
aunibers and special parameters.

following conventions are followed in this manual.

The word 'sector' refers to a 512-word block; the Model 3146 and 516 memories
are organized into sectors. The word ''segment'’ refers to 2 128 -word block;
the storage of secondary storage devices operating under RTX ‘16 is divided

into segments.

Tach octal number is preceded by an apostrophe or followed by the word
"octalt, except where there can be no ambiguity. Ior example,
"74 = 74 (octal) :748: 6010, :

Diamond brackets[< >lare used taroughout this manual to enclose items of a
variable nature. The prefix I is used to indicate that decimal numbers are
required; 'Ito indicnte that octal numbers are required; and A to indicate that
alphabetic or ASCII information is required., Thus, <116>means six octal
digits, <A4” means four ASCII characters, and <pointer to program name

in ASCII> means that the symbolic name of a iocation containing the program
in ASCII is to be inserted. Two examples of the use of diamond brackets

follow.

1. General case: DAC <A4>

Specific example: DAC LKL3
2. General case: LDA <pointer to buffer~
Specific example: LDA LKBPY
LKBP DAC BUFF
Round brackets [()] are used to mean ''the contents of the indicated
register!. For example, (A) = '333 means that the A register contains
octal 333,

When a user response on the ASR is to be followed by a carriage return, the
symbol ¢/ r is used.

The reader is assumed to have a familiarity with programming in Series 16

assembly language and to have read the 316/516 Programmers' Reference Manual,

Doc. No. 42400343401,

For systems using the executive module EXEC-A (Doc. No. 70181463000) Rev. H

onwards, the following significant changes, that have been made to OP-16, apply.

Clock Frequency

The executive module is designed to operate with a 60Hz mains sopply which gives
a real time clock basic hardware interval of 16,7 ms. When using the system with a 50Hz
real time clock, the following changes must be made to the executive. These changes can
be made before the system is started using the computers control panel, or the 'replace
core' function of the off-line utility program, or the changes can be made when the system

is running using the 'replace core' function of the on-line utility program.

Change locations:

CLK? to DEC 10 ('12)
CLK3 to DEC -5 ('177773)
XMIL to DEC 9 ('11)

These changes will give a system time interval of 100 ms.

NOTE: When changing the system time interval, XMIL must always be set to one less than

the number of system units in one second (i.e, CLK2-1).

(vi)

Section I

Section [I

Section III

CONTENTS

Introductionocee- e I
OP-16 Operating System S R
FEeatUreS. coooosessaocsmoss . e e oo aene
Componentsc.oev..- JR O IR
Requirementscoeeens ceeee e e
Hardwaze- e b e e . e e e
SOftWaATe . ovevvennnsans . e e v esnesaa e
RTX-16 Executive e e ns e e e
functions et J T LI
Construction ,..... v I I I
RTX~-16 Executive......... R I
Basic EXECULIVE s o vy v arsarseanes s mmenesesrromnsnn s it iy
Configuration Module Execthve Tables «uoveveeessornocnonons
Interrupt Handler R R R R
Fxecution Priority.....ooveeveeoerens e
Interrupt CONNECtion . .v.uvuerrcnen et ts .
Interrupt Response Code........... T R
Program Schedulercoereerernrrersmrrnts e
Program Status e e e e
Scheduled FR T I I e
RUNDING v v ev v vanersonme o s e e e
Waiting . cvvvvevenooeres e e . Ve
Tnactive . cvevnonesvoon e e A e e e e
Program Requests s es e e
Labels o vueorenenaroaooeens e e e e
Real-Time Clock........ ... cerane e
Options Available to OP-16 Programs e
Coordination Option. e . e
Communication Option,o [N
FIFO RoGtine, . . .vvvvueeroosecnnse . e
Program Residency Option,c.oovereenes e e -
Error Print Programl, .. eeesesorrsmoersecssss S .
Error Message FOrmat, .. .o.vevoveneermreesmrorntnnins
Calling Error Print Program JR T e
System Loader (SYSLOAD) ... cviiv e . e
System Function Calls,..oovieeeen R I
Function 1 - Request Program....... SR
Error Return J R I
Examplesocvaeeeain . e
Function 2 - Schedule T Y =S S JL I I B .
Function 3 - Connect Clock. ouonevanenrrrmreeerer e
Iorror Return-. J I .
IoXAmMPLES « v v e v v a e s
}unction 4 - Disconnect Clock oo i i i i e [.
Function 5 - Connect INterTupt oo ercrvmeener ooy
Irror Returncceeeoneneer s F O
XAINPLE « v e v ceev e
Function 6 - Disconnect Interrupt J T I
Function 7 - Terminate ee e e e n e e e .

Page

ot
LI T T
DN DY e b e

1 1

i

s b et et b e bl et
H 5
wow W I

i

oo VI
AN

N DY DN DD DY DN DY DYDY
I T D T I T
OGJOG\l\lG\O'\U\U"IU\LﬁUT‘PdeN'—‘MP'

i § [3

1
P O
D e b O

NV D Y DN DY DD N T
i

4
[
W

(W)
t 1

L
' i H H
i bk s et

i

o W W W W e
i
N T A S e

[EVIRRUS U]
[]
- O

Section III (cont)

Section LV

Section V

Section VI

Section VII

CONTENTS (cont)

Page
Function 8 - Wait......... e e e s 3-7
Compound Functionsveeeee et tns 3-7
EXAMPLES o v ves e e in e 3-7
Writing New System Functions............... e e 3-8
Fxamples of Systermn Functions........cecoererrrererrerre 3-8
Configuration Module ..o e 4-1
KOCOM HEBAET « v v vn et iieaenae e ssmo e e s 4-1
XPLT - Executive Program List Tablevvvnvvvvverens 4-2
XPET - Executive Program Entry Table.......... e 4-5
YIDT - Executive Interrupt Definition Table .. .vonvvvevrennr 4-5
XIDT....... e . T I I L B TR 4 -6
XIDI cvneno e e .. e J 4 -8
D 8 Y R I T 48
XPCT - Executive Program Communication Table «oovvv e . 4-9
XCUT - Executive Clock User's Table. ... c.oovvvervenrerrere 4~10
YXIVT - Executive Interrupted Variables Table coviveeoeenon 4-10
X LPT - Executive Label Parameter Table «vvev oo anones 4-11
XFET - Executive Function Entry Table R 4~11
YINT - Executive Initialization Locationee-oc- .- 4-12
KDCT - Executive Device Configuration Table.....oecever.-- 4-12
XSPT - Executive Special Parameters Table ..o e 4-13
WCOM Size Estimationcevevneornen e e 4-13
Configuring Sample SYSEeIml..ove vverrereo e 4-14
Core Map. .o re o rsnnaees e F P 4-14
Mass-Store lLayout S 4-14
Configuration Module «....evirrerr ey 4-14
RTX=16 Utility Programs. . ..coeeeeenenesee T A 5-1
Utility Programs...... e R 5-1
OVeETrVIEW v o v v v vt iv e inoe s neeen s e e e e 5-1
Preconfigured Special-Purpose Utility Programs Bl
Functions....... e e e 5.2
Core REQUITEMENTS 4o vvenuvnrrens e sae oo s 5=3
Device DIIVETS « v v invenaeone s eceeranse e 5-3
Writing @ PTOETAMIe .« e nnneencan e st s o s 61
Program HeadeTrc.oonen e e e e 6=-1
Program NAITIE «..ovcenanassennee s onssr oot . 61
Interrupt Response COode ...vurnaern i rn e 6-1
Writing Program with Interrupt Response Code..enenneuncnns 6-~3
Passing Instructions to Drivers.........vevervrervocres 6-3
Bookkeeping in Drivers O R R 6~=3
Use of Error Print Program............ e ee e e e 6-3
Sample Program without Interrupt Response Code ..o ovvvve s 63
Sample Program with Interrupt Response Code. 6-7
System Building . ««.ocooervcanemrs e 7~1
Layoutes e e ovrvoneaneaes FR T I 7-1
Building Core-Only System.....covce rrrenros ey 7-3
Building RTX~-16 Executiveooono-n e 7-3
Building Programs for RTX=16 B 73
Building Programs in Sectors 4 through 7 ... oo 7-3
Building Programs in Sectors 10 and Above. =7
Building Core Mass~Storage SyStem..........- e 7-7

(viii)

Section VII {(cont)

Section VIII

CONTICNTS (cont)

Building RTX =16 Executive .-« covecrranrrennrs e
Building Programs for RTX-16 e
Building Programs in Sectors 6 through 12 ..o
Building Programs in Sectors 13 and Above........ RN
System Initialization e

Special Capabilities of RTX-16 . it eeeniarnnaensannans R
Relocated Base SeCtOr . v vvuiveteoeear s neannseceesnn
Programs Using Sector Zero e e s
Programs Using Relocated Base SeCtor..........vvv-no
Writing Special Queueing Subroutine...........c. v
Writing New System Functionsccvimenermrereos
Control Interfaces........... R
Entry from User Program to 1' unction Handler.........
Entry to System Function from Function Handler.......
Return from System Function to Function Handler......
Return to User Program from Function Handler.
Return to Scheduler from Function Handler............
Data Interfaces e e e
Entry from User Program to Function Handler........
Entry to Function from Function Handler........o.c. .o
Exit from Function to Function Handler e
Exit Back to User Program from Function Handler
Txit Back to Scheduler from Function Handler
General Rules.oty et
User Initialization Routineso FR A
Description. B R
Programming NOLES « ..ot vvv e v ermn e e
Configuration Module. . oo vvev oo emoeene s
Initialization Control Subroutine............. e
Example 1 e e
Example 2 I R
Adjusting Clock Resolution..........eovvrvnnnerrenns e
16,7-ms Clock Resolution...... e
40-ms Clock Resolution (Model 316 Only) veviennnenuennns
Fortran Capability0 e e et e
Compiler Configurationcveerenns S e
Programming Rulesvuiinrinnrnerrevanrmneenes
OP-16 StAtEIMENtS v v s et oneoansoonsassnesseonneeos
Header FE R
Request....voouenn F
GehedUle « v e ennoaesnoneeaesscaenessenseeenss .
Connect Clock v uu e it it it ie e ie it e e e e s o
Disconnect CloCK . vttt inenneosononens
Connect Interrupt)
Disconnect Interrupt.............. e e

e TININALE . o o v v s e v e e et um e e e s

Print Krror F R R
Interrupt Block eovvi et
Interrupt REtUrn .. .oov ittt ienennven
In-Line Assembly Code...... ..o
Octal CONSLANES & v v v v v e te v toeneanaosonnananeesesossn
Data Statement Enhancements........ e PP
OP-16 Fortran Package

(ix)

[}
[NoRRNeINe}

3
ot
o <o

i

@ Jo Yoo KRNI
\ [!
R I T N S

x
§

@ x ®
[[T T
AR W W W w W

> 0 X o C
i

> o 00 OO
[N B

Ie

W o X
1 [A T
© O O 000 oo a0 000 OO OOy U Ul b

t

w00 o 0 W o X
PR R TS ST TS R T T T SN SR S |

B W W W N e OO

[N

LI S [

OOOOOOOCCC&?OCCX)CXJGJQOOOUJOCCECEOCIDCCC
] 1
P el T e e e e e

[s2NRG NG RS R O]

Section VIII {cont)

Appendix A

Appendix B

Pigure
Figure
igure
Pigure
Figure
Figure
Figure
Figure
ffigure
Figure
I"igure
Figure
Figure
"igure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1~
2~
2~
2~
2=
2~
2
3=
3=
3~
3~
4
4-
4~
4w
6=
6-
6-
6~
6-
7-
7-
7=
7=
7=
7=

C\U‘lrbwt\-“—'u\vhw[\Jo—-‘rbw(\))—dubwl\)t—‘o\m»&wh)r—-»—-

CONTENTS (con

t)

O TS 2 U= 2

OP-16 Fortran Read/Write Statement
Processor (RWSP) . .. it iiienen oo
Re ~entrant Math Subroutines (RMS).
QOP-16 Fortran Library Extensions (FLE)...........
OP-16 Fortran Package Loading Procedures
OP-16 1/O Editor Error Messageso.. .
Compiler Library Generation Facility........ ...
Register L.oadeeerinennanenrnonsesoanncnaos
Register StOre ... v vovnvnneon o e
Register Test.......verenrnonncarrooon s s
Fortran Library Additionsccecvenrreon
Function LOC {@rg)...evvenvcnorannnnasoneeroes
Function IFETCH (@rg). . ve v oo
Subroutine ISTORE (argl, arg2)..ooveevoronnn
New Error Diagnostics v inroecrrs
Extended MeEIMOTY v v i vnvn e s sasecasenases ey
Flimination of Three System Routinescoccoervares
Error Print Programo
O P T RAC . s s s ettt e s et e s sas oo s smn s
Keyboard Program.eaeennne s cnrryy sy
Segment Reference Tableo
interrupt Reference Numbers Assigned in RIX=16 ...y

ILLUSTRATIONS

Components of OP-16............
OP-~16 System and its Parts......
RTX=-16 Executive.......covovns

............................

O I R I R T R R T

Sequence of Events in Response to an Interrupt...........eevvee

Coordination Example
Communication Example

............................

Sample Call to Error Print Program..........ccrhcerrerere s
Examples of Request Program Fxecutive Function s avsos oo e e

Examples of Call to Connect Clock

System Function

Examples of Call to Connect Interrupt Executive Function

Examples of Compound Functions .
Bit Assignment of Status Word ...
Bit Assignment of Option Word ...
Bit Assignments of Communication
Core Map for Sample System
Structure of Program Header.....
Queueing Labels in Program Heade

Word « oot e e

o T I AR BN

Simplified Flow Diagram for Driver Programs........ .o

Example of User Program
Example of Driver Program......
8K Core-Only System............
12K Core/Mass~-Store System
Building Core-Only OP-16 System

............................

............................

Memory Map of RTX~16 without Fortran Capability.«.ovevveeeen
Memory Map of R1X~16 with Fortran Capability «vovvvoveonee

Building Core Mass-Store System

(x)

............................

8-

8-
R
8=
G
8w
8-
8=
8 -
8
8
R~
& -
&=
8
8w
8w
8

Papge

16

16
17
17
18
19
19
19
20
20

20

20
20
20

-21

21
21

-21

3-21

8

-22

=1

[) § 3 i

B T S R B U O N U SV N N
[T U S S SN SN S S S
OV OOC W AR DN DY R W O U IV e e 0O DY DY
NoO

¥

I S T T |
oo O W

=3 =~ SO OO O O
11

w

ES

Table
Table
Table
Table
Table
Table
Table
Table

Cable

TARLES

Minimum RTX-16 Hardware ., ,....-cvevvns e e
Basic Executive Tables R R e
Real-Time Clock Resolution.......... oo
Executive Error Messages . v.ivi e eerreer e onrecconens
Base Frequencies for Clock Calls. ..o reenes
Mainframe Interrupt Bits (SMK '0020) ..., ... vvienncnennnn s
Mass=-Store Layout for Sample System........ouvveronneneeecen
Sample Configuration Module , e e
Utility Program Core Requirements..............cvcrvronenees

SECTION I
INTRODUCTION

OP-16 OPERATING SYSTEM

Op-16 is a small multiprogramming operating system complete with 1/O drivers, utility
and support programs, debugging aids, and on-line peripheral device test prograins. It is
capable of operating in a core-only or core/secondary storage environment, Use of the ex-

tended addressing mode (up to 32K) is optional (refer to Section VIIL).

The Op-16 system answers the needs of users who require a small, efficient program-
ming system to implement real-time data acquisition and control. An Op-16 system may be

built around either a Model 516 (Model 1605 Computer System) or a Model 316 (Model 1603 Com-~

puter System).

Features

The Op-16 Operating System offers the following features.

® Priority scheduling
% Multiprogramming
o Centralized control of peripheral input/output operations and associated

interrupt processing

@ Coordination of core areas, input/output devices, and common subroutines

@ Communication between user programs

® Modular organization allowing easy configuring to suit unique application
reguirements

@ A complete set of utility, support, debugging, and peripheral device test

pr ()grams

@ Fortran compatible

Components

Any Op-16 system is composed of the following components (see Figure l1-1).

® RTX-16 Real-Time Executive

® Utility routines (optional)
@ Debugging aids

® Real-time peripheral device drivers and test programs %
@ Fortran package

® Honeywell Series 16 standard support software

1-1

Requirements

HARDWARE

The minimum hardware requirements are listed in Table 1-1.

operate properly-designed application programs under RT

Although it is feasible to

X-16 in 4K of core, the system must

be built on a larger machine and transferred via a self-loading paper tape.

OP-16

- RTX-16 EXECUTIVE

BASIC EXECUTIVE
CONFIGURATION MODULE
COMMON SUBROUTINES

—— DE VICE DRIVERS

L— ON-LINE UTILITIES

b OF F-LINE UTILITIES

— FORTRAN PACKAGE

— ON-LINE TEST PROGRAMS
L ON-LINE TRACE PROGRAM

b— SUPPORT SOFTWARE

LOADERS

ASSEMBLER

COMPILER

MATH LIBRARY
DEBUGGING AIDS
HARDWARE DIAGNOSTICS

.Figure 1-1. Components of Op-16

ASR-33/ASR-35 Teletypewriter

Table 1-1. Minimum RTX-16 Hardware
Component 316 Model No, 516 Model No.
Computer with 4K memory 316-01 516-01
Real-Time Clock Option 316-12 516-12

316-53/316-55

516-53/516-55

SOFTWARE

The minimum software configuration for an RTX-16 Executiv

L]

Basic Executive

system is as follows.,

®

[

Configuration Module (user -supplied)
FIFO Communication Queueing Subroutine

Error Print Program

In addition, RTX-16 supports an extensive set of device drivers, a p weriul sel of con-
figurable on- and off-line utility programs, on-line 1/O device test programs, and preconfigured
system builder programs. For an up-to-date list of drivers and utilities, refer to Doc.

41286638311, Binder Table of Contents for OP-16 (BTC1OP16).

RTX-16 EXECUTIVE

Functions
The RTX-16 Executive is a collection of routines which perform the following functions.
® Execute programs according to their priority

® Keep track of the coordination requirements of programs, devices, and
core storage

® Handle the interrupts which communicate external conditions to the Execu-
tive and its programs

@ Keep track of the time of day in order to execute programs at certain times
or after a certain delay

® Handle communications between programs and the Executive

® Handle communications between the operator and the Executive
@ Detect errors in the system or individual programs

@ Perform the necessary bookkeeping for 2 multiprogramming,

multilevel system

Construction
RTX-16 is constructed of compact modules. Only the modules needed for a particular

application are used, The user writes a configuration module containing all the variable infor-

mation for a system.

All programs, whether normally resident in core or normally resident on secondary

storage, are treated identically.

SECTION IT
RTX-16 EXECUTIVE

The RTX-16 Executive is the fundamental component of every Op-16 system. It is com-
posed of four parts: the Basic Executive, the Configuration Module, the FIFO Routine, and the
Frror Print Program. See Figure 2-1 for a general core layout showing the relationship of the

modules.

BASIC EXECUTIVE

The Basic ixecutive occupies sectors 1, 2, and part of 3 in core. 1t contains its own con-
stants and cross-sector links, allowing all of sector 0 (except the hardware dedicated locations)
to be used by user programs. System variables needed by the Basic Executive are defined in

ii.e RTX-16 Configuration Module.

The Pasic Kxecutive consists of three major parts: the Program Scheduler, the System
Vunction Handlers, and the Interrupt Handler (see Figure 2-2). The ‘Progranl Scheduler is the
most important {rom the point of view of the individual programs, since itis only through its
use that any of them may be started up. The System Function Handlers give programs access
to the Basic Executive for requesting service from it and keeping it informed. The Interrupt

Handler notifies the Executive of conditions outside the computer which require its attention.

There are several other important parts of the Basic Executive. One of these is the
Real-Time Clock Program, which is connected via the Interrupt Handler. Another, also con-
nected to the Basic Executive via the Interrupt Handler, is a small routine which calls in the
Cxe\'iu‘iivé Keyboard Program (KB) whenever a dollar sign ($) is typed on the ASR. The Iirror
Print Program (KP) signals the operator of trouble in the hardware or the software of the
system. There is also a routine in the Basic Executive (not shown in Figure 2-2) which ser-

sices the Relocatable Base Sector option if the computer is so equipped.

The nesxt several subsections describe the tables of the Configuration Module and the

operation of the various portions of the Basic Iixecutive.

CONFIGURATION MODULLE EXECUTIVE TABLES

Proper understanding of the Executive Tables is necessary for an understanding of

Executive operation. These tables are located in the Configuration Module. [ach has a

2-1

four -word name and a four-letter mnemonic beginning with X and ending with T. Since they
contain information generated by the user, a detailed description is deferred until later (Section

IV). A brief description of each table in the module is given in Table 2-1.

INTERRUPT HANDLER

Whenever an interrupt occurs, the Interrupt Handler determines the source of the interrupt

and jumps to the user's interrupt response code for that interrupt. This is accomplished through
the Executive Interrupt Definition Table. The user's interrupt response code must be very brief.
Control then returns to the Interrupt Handler, which optionally schedules a label in the user's

program and returns control to the Scheduler, Further details follow.

SECTOR

CROSS-SECTOR LINKS

USER PROGRAM

RTX-16

EQE'CCUTIVE [Axe Concon
EXECUTIVE CORE.ONLY MINIMUM
2 SYSTEM CORE-MASS

STORAGE
SYSTEM™

RTX- 168 CONFIGURATION
MODULE

RTX-16 FIFO ROUTINE &
ERROR PRINT PROGRAM 3

- K
MASS
4 STORE DRIVER
SYSLOAD
UTILITY
5 PROGRAM*®
FORTRAN
PACKAGE
6 OTHER
DRIVERS
7
0
11
4 USER I
PROGRAMS

“SOME SYSTEMS MAY NOT NEED ONE OR MORE OF FIFO, ERROR PRINT, AND KEYBOARD,

Figure 2-1. OP-16 System and its Parts

2-2

J

1/0 DEVICES

RTX-16 EXECUTIVE
| BASIC EXECUTIVE

|
|
! . |
PROGRAM NTERRUPT | SYSTEM REAL-TIME
| | GCHEDULER | HANDLER | FUNCTION CLOCK 1/0 DRIVER PROGRAMS |
| HANDLERS | PROGRAM l |
‘ |
!]
EXECUTIVE ERROR PRINT PROGRAM |
I'| cONFIGURATION EmoaRAN COMMUNICATION gggg:gg !
| | MopuULE ROUTINE (FIFO) | ADDITIONAL
| ! {/0 DEVICES
e e e e J
ON-LINE USER USER RTI }
ASR UTILITY PROGRAM PROGRAM HARDWARE
> PROGRAM NO. 1 NO. N
ON-LINE
TRACE)
PROGRAM PROCESS 1

*THESE PROGRAMS MAY OPTIONALLY BE RESIDENT IN CORE OR ON.THE MASS STORAGE DEVICE.

Figure 2-2. RTX-16 Executive

Execution Priority

fxecutable code is divided into two categories, as follows.

1. Interrupt Code — defined as the code executed as the response to an
interrupt. The entry point of interrupt code is defined by the Con-
pnect Interrupt Systern function (see Executive System functions in
Section ILI).

2. Noninterrupt Code —defined as all other executable code under the
priority control of the Scheduler.

Interrupt code is always exccuted before noninterrupt code; that is, if an interrupt has
occurred, noninterrupt code will be suspended until all interrupts have been serviced. If two

interrupts occur simultaneously, the interrupt tested higher in XIDT is serviced first.

Table 2-1. Basic Executive Tables

Mnemonic Name Description
XPLT Executive Program List Table Contains program name, address, size,
status, and option information.
XPET | Executive Program Entry Table Defines priority of programs described
in XPLT,
XIiDT Executive Interrupt Definition Table Contains all information necessary for

identifying and servicing interrupts.

XPCT Executive Program Communication Table o buffers for parameters being
Table passed between programs.
XCUT | Executive Clock User's Table Contains information on each program

connected to clock at a given instant.

XIVT Executive Interrupted Variables Table Store key variables for each interrupted
program.

XLPT Executive Label Parameter Table Temporarily stores labels scheduled by
interrupt response code.

XFET | Executive Functions Entry Table Defines number of System Functions in a
system and their location.

KDCT | Executive Device Configuration Table Contains information needed by peripheral
device drivers.

XKSPT Executive Special Parameters Table Contains additional information needed by
Executive.

The priority of noninterrupt code is determined by the position of the program!'s pointer
in XPET; that is, if two programs in XPLT may be started, the program with the higher pointer

in XPET will be started first, provided that core areas and devices needed are available.

Interrupt Connection

An interrupt is connected when it has been enabled by means of its mask bit and a pointer
to a routine (the interrupt response address) has been associated with it in the Executive
Interrupt Definition Table. This is accomplished by the Connect Interrupt System Function.

Disconnected interrupts are masked off.
Interrupts are connected and disconnected on line under program control. This allows
more than one program to use the same device at different times (for example, the ASR, which

is used by the Error Print Program and the ASR Driver).

Interrupt Response Code

This is the portion of code that actually handles the interrupt. It must be as short as
possible since it runs with interrupts inhibited. If further work is to be done, the interrupt

response code should return with the label (address) of the section that will further process

2-4

- -

the interrupt by priority scheduling in the A register. [Figure 2-3 shows the flow of covtrol
during an interrupt response. More detail on interrupt response code is given in Section VI,

W riting a Program.

PROGRAM SCHEDULER

The Program Scheduler is the most basic module of the Basic Executive. Its funciion
is to start up the highest priority program which has been requested. Whenever called, the
scheduler uses the pointers in table XPET to scan the XPLT table for the first program that
may be started. If no program is found, the scheduler loops through XPLT continuously until
an event causes a program to be requested. The scheduler is in control of the system under
the following conditions.

1. When the system is idle (that is, no user programs are active).

2. [mmediately after a program has executed a Terminate Function.

(8]

Immediately after all interrupt code has been serviced.

4. Immediately after a program has executed a Wait Function.

The maximum time between scheduler entries is 50 ms for a 16. 7-ms clock.

Program Status

Programs may be in any one of the following states.

1. Scheduled
2. Running
3. Waiting
4, Inactive
SCHEDULED

The scheduled program has been requested but not yet started. It remains scheduled un-
til it becomes the highest priority program requiring service and all required items are avail-

able (for example, core memory, shared nonreentrant subroutines, and devices).

RUNNING
A program is running when it is in control of the CPU. It remains in this state until it

does a voluntary Terminate or Wait, or is put into Wait because an interrupt has occurred,

WAITING

A waiting program is in core but has been put into the Wait state either voluntarily or
because of an interrupt. If the program is waiting voluntarily, it will be restarted by a label
scheduled by another program or by the occurrence of a connected interrupt. If the program

has been interrupted, it will be restarted when it is again the highest priority program re-

questing service.

INACTIVE

An inactive program is ignored by the Executive. It may be in core or mass storage.

Program Requests

The Executive considers all requests for programs to be equal, regardless of whether
the request originates from a running program or from an operator action. The program is
started according to its priority. Users who wish requested programs to be executed in a fix-
ed order should chain the requests by having the first program in the chain execute a request
function for the second program in the chain, etc. Programs using the communication option
will be rerun once for each request. Programs not using this option will be executed a maxi-

imum of twice for multiple requests. (See Communication Option later in this section.)

INTERRUPT CAUSES
INDIRECT JST TO IH

H DAC *°
Pt —
R
e
' — SAVE VARIABLES
. { OF RUNNING
—————— | PROGRAM
1 s
-+ XIDT
JMP XIDT —ee
IDENTIEY
INTERRUPT
SKS J
JMP
2
DAC Y
2 5 ST + 1
0 - JMP 1H20 ACKNOWLEDGE
e INTERRUPT,
—_— START NEXT
DEVICE CYCLE,
—— SCHEDULE LABEL X+ A
i LABEL X REGISTER
—_— 6
R —
——————— | PROCESSOLD
- " % INTERRUPT;
| SETUPFOR
— | NEWINTERRUPT
7 -
= WAIT
- —e
L PCONTINUE USER
— A PROGRAM
] CONFIGURATION
— MODULE
EXECUTIVE

Figure 2-3. Sequence of Events in Response to an Interrupt

2-6

j:ibelr-;

functions
register after interrupt respon
unless they are zero.
waiting.

is an error.

A label is a core address at which execution is to start.

The labels are queu

(described later) to instruct the Executive to schedul

A program may schedule a label in any 2

The label scheduled when the interrupt response cod

same program as the interrupt response code.

requesting program,

If the program requested or in which a label is scheduled is of higher priority

nrogram will be activated.
k=1

REAL-TIME CLOCK

he time-related.

by the user if he desires.

The Real-Time Clock is a combination of hardware and software

Table 2-2.

the requesting program will be suspended,

The standard system gives a resolution of 50 ms,

e labels.

Programs use one of the system

se code has been completed are treated as a label to be sch

Table 2-2 shows how the user may vary clock resolution.

Real-Time Clock Resolution

The contents of the A

eduled

ctive program either running or
ed in the header of the requested program; overflow of this header

e terminates must be in the

than the

and the requested or scheduled

that allows programs to

but this may be adjusted

60-Hz AC Power

50-Hz AC Power

Hardware Interval
Software Interval
Resolution (Model 516)
Standard
Range
Resolution {(Model 316)
Standard
Range

a
16,7 ms

3 hardware intervals

50,0 ms
16.7 ms to 9 minutes

50.0 ms
5 ms to 10.4 minutes

20 msa

5 hardware intervals

100 ms
20 ms to 10.4 minutes

100 ms

5 ms to 10.4 minutes

a_,. , , . .
Fixed on the Model 516; may be varied from

b .
May be varied from

5 to 20 ms on the 316.

140 32,7067 (see Section VIII, Special Capabilities of RTX-16).

ig incremented.

tem time an

cally executed p

Location '61 is dedicated to the

A clock interrupt calls the Real-Time Clock routine.

An interrupt is generated each

d then steps through the Clock U

rograms are due o be run (

real-time clock. At each hardware interval this iocation

time the contents of location 161 become zero.

This routine first updates the sys-
ser's Table, XCUT, to find which of the periodi-

see the Connect Clock system function in Section III).

?E

T'he clock routine then requests execution of any program which comes due at this iline., When
all of XCUT has been updated, the clock interrupt is completed, and control returns to ihe
Scheduler to start up or resume the highest priority program requiring service, possibly an

interrupted program.

The system time is available for use by all programs. It may be set and displayed by the

use of the Keyboard program. The locations for system time are as follows.

Location '1003 50 Millisecond units
Liocation '1004 l-second units (0 to 59)
Location '1005 l-minute units (0 to 59)
Location '1006 l-hour units (0 to 23)
Location '1007 1-day units

OPTIONS AVAILABLE FOR OP-16 PROGRAMS

Coordination Option

The coordination option is used for any program which can run only when certain con-
ditions are fulfilled. In most cases the necessary condition is the availability of the space in

core in which it runs.

Mass -store resident programs must use this option, and the user must make sure that
the appropriate bit(s) is {are) set in the coordination word(s). It is assumed that a mass-store
resident program will share an area of core with one or more other mass-store resident pro-
grams or blocks of data. Coordination is used also to ensure that peripheral devices, such as
the ASR, or certain common but nonreentrant subroutines are used by only one program at a

time.

The user assigns a certain bit of the master coordination word, XCCW, to each device,
routine, or portion of core which must be coordinated. That bit of XCCW is set to 1 whenever
a program is running that other program that has the same requirement may run. Termination
of the program which had that requirement resets the bit in XCCW to 0 and allows another pro-
gram requiring that item to be started. KEach pfogram using coordination has a coordination
word in its entry in the Executive Program List Table, XPLT, This word has a 1 in each

bit position which must be coordinated in order for the program to run.
The user must assign as many bits of XCCW as necessary when configuring the system.

His assignment of a bit to a device, or portional core is completely arbitrary but must be con-

sistent throughout the system. Figure 2-4 gives an example.

2-8

xcew mo n 0 ;) A%»//%A/g/j/%/// ////%

L —- ASR BIT

PAPER-TAPE READER BIT

—— PAPER-TAPE PUNCH BIT

SEGMENTS 19 AND 20 (PART OF SECTOR 4) BIT

SECTCR 5 BIT

PROGRAM COORDINATION WORDS IN XPLT:

1 2 3 a5 6 ;8 9 o 11 12 13 14 15 16
7 % /
PA 0 0 0| o 1 // / /
77

1 2 3 a4 5 & 7 8 9 W 11 12 13 14 15 16

KK 0 1 o | o | 1 / %
% 7
1 2 3 4 B 6 7 8 9 0 11 2 13 4 s 6
7
8 N T T %%
// /

Program KK cannot run concurrently with program PA, because both require the ASR.
it may run concurrently with PB.

Program PA can run concurrently only with F8.

Program PB can run concurrently with either of the other two.

Figure 2-4. Coordination Example

Communication Option

Some programs require input parameters each time they are run. The communication
option allows a program {o receive any parameters it requires. If a program does not need

parameters, it need not use the communication option.

When System Function 1, Request Program, is called, the lxecutive checks the IKxecu-
tive Program List Table to see whether the requested program uses communication, If it does,
the requested program's communication word in XPLT tells the Executive which queueing
routine and buffer to use. The Executive then passes one parameter from the calling program
to the selected queueing routine. The (ueueing routine queues this commniunication parameter
in the specified buffer. It then returns control to the Executive, which will return control to

the calling program.

RTX-16 supplies one queueing routine, FIFO (first-in first-out). The user may write any
additional queueing subroutines he desires, such as last-in first-out, or the priority of the

calling program.

The next time the requested program is started up, the Executive calls the queueing
routine specified in the program's communication word and asks for the latest communication
parameter in its buffer. The Executive places this parameter in the program's header, and the

program is started up. [igure 2-5 shows a specific example.

I

] ‘ ‘
—_—
SYSTEM FUNCTION ———
CALL-REQUEST —— EXECUTIVE PERFORMS
PROGRAM CC R SYSTEM FUNCTION
PARAMETER . ————eme
3 —_— - —
e \ __ SYSTEM FUNCTION — —
J— } CALL-TERMINATE
\ N ——— 0 ——— | CCPROGRAM
P — — o — [HEADER
e | EXECUTIVE .
R " — g ———
PARAMETER MOVED TO — :c;g EDULES 0
COMMUNICATION BUFFER o /—’
DURING SYSTEM FUNCTION = '
REQUEST PROGRAM / ———— | ccsTaRTS
PARAMETER MOVED TO EXECUTION

CC PROGRAM HEADER

2 BEFORE CC IS STARTED
COMMUNICATION 5
BUFFER
— — S
PROGRAM NM RTX-16 PROGRAM CC
EXECUTIVE

Figure 2-5. Communication Example

I'II"O Routine

IO is the system-supplied queueing routine for the communication option. It may be
omitted in systems where the communication option is never used. This routine takes care of
both filling and emptying the communication buffers. Section VII includes instructions on

writing special queueing routines to supplement or replace FIFO.

Program Residency Option

Programs may reside in core or on mass storage when not active. Bit 14 of the option
word in the XPLT Table is 0 for core-resident programs and 1 for mass-store resident

programs.
Programs that reside on the mass-store device must have the program size and starting
segment indicated in the option word. See SPLT, Executive Program List Table, in Section

1V, for details.

TRROR PRINT PROGRAM

RTX-16 includes an Error Print program designed to notify the computer operator by way
of the ASR of any error. The errors it detects are those that may signal equipment failure or
improper programming. Consequently, an error message from a properly running RTX-16
system should be of great concern to the user. Table 2-3 lists the error codes generated by
the Executive. Other programs, including user programs, may use this feature. They will

have their own unique error codes, which should be listed and available near the ASR.

Table 2-3. [txecutive Error Messages

Crror Number Program Name Description and Result

El ‘Any A. Named program has asked for function in-
volving another program, but requested
program cannot be found in Program

List Table.

B. Named program has used illegal function

number.

P Any Program has tried to schedule label (function 2)
in named program which is not active or which i

already has maximum number of labels scheduled.

13 Any Named program has tried to connect clock, but
Clock User's Table (XCUT) is full.

4 Any Named program has tried to disconnect clock
without its having been connected.

17 Any Named program has attempted to terminate with
interrupt still connected. Program will be dis -
abled; it can be reenabled only by operator
intervention.

w11 $$ Unidentified interrupt has occurred. Interrupt
is ignored.

12 Any Named program (interrupt-driven) has tried to
schedule label from its interrupt code to its non-
interrupt code, but XLPT table is full.

£13 Any Executive has tried to schedule label {from XLPT)
in named program which is not active or which
already has maximum number of labels scheduled.

2-11

frror Message Format

A sample error message is printed below. Program SD has detected an error which it
identifies as 333 (octal):
E3335D
Error messages are always in this exact format, preceded by a carriage return, line feed, and

bell character. Leading 0's in the error number are suppressed.

Error messages are printed as soon as the Error Print program can be started by the
Scheduler. Up to 10 messages can be queued. User programs which use the ASR driver and users
operating the Executive Keyboard program should not tie up the ASR interrupt too long, inhibit-

ing error messages.

Sense switch 4 may be set if error messages are not to be printed. This should be used

for debugging only.

Calling Error Print Program

A pointer to the entry point of this routine is always stored in location '1016. Before a
call for an error to be printed, the program name should be in the X register and the error

number in the A register. The following calling sequence should be used.

(L) INH

(L+1) LDA <A4> Variable specifying binary error identification Code
(L42) LDX <A4> Variable specifying ASCII program name

(Li+3) JST* <A4> Variable specifying '101016

(Li+4) ENB

{L+5) Return point

Figure 2-6 is an example of a call to the Error Print program; program XJ has detected

the error it calls '305.

INH

LDA ERNM ERROR NUMBER

LDX PGNM PROGRAM NAME

JST* ERPE CALL ERROR PRINT PROGRAM

ENB

JMP CONT CONTINUE AT CONT AFTER ERROR PRINTED
[ERNM OCT 305 ERROR IDENTIFICATION CODE
PGNM BCI 1,XJ PROGRAM NAME
ERPPE DAC* '1016 PROGRAM ENTRY POINT
RIESULTING ERROR MESSAGE:
E305X]

Figure 2-6. Sample Call to Error Print Program

SYSTEM LOADER (SYSLOAD)

The System Loader is used in mass-store systems to load mass-store based programs
into core for execution. It is requested by the Scheduler and runs as a program under the
xecutive. It makes requests on the mass-store driver, as any other program does, for data
transfers. By suitable entries in the Configuration Module, the Scheduler's requests for pro-

grarn loading may take higher, the same, or lower priority than data transfers.

W henever a mass-store based program is to be executed, the Scheduler first checks the

program's coordination, and if it can be run, the program is temporarily disabled. The

Scheduler then requests SYSLOAD using the Request program subroutine (RPRO) in the Execu,tive,%

and passes the XPET entry of the program to be loaded as a parameter.

When SYSLOAD runs, it first uses the XPET entry to locate the KPLT entry for the re-
quired program. It then uses the information in XPLT to build up a transfer request for the
xnass~storé driver. Before requesting the mass-store driver, however, SYSLOAD determines
the name of the driver that is to be used for program loading. This allows the user to specify
exactly the priority required for program loading. This is done by having a special entry in
YXPLT for the mass-store driver, in addition to the normal entry used for data transfers. This
entry refers to the mass-store driver by a different name, which may be chosen by the user,
and is the one used by SYSLOAD, Having found the appropriate name, SYSLOAD then requests
the driver and waits for the transfer to be completed. After a successful transfer into core,

the program is enabled again and ready to be started up by the Scheduler.

The following two error conditions may be reported by SYSLOAD through the Error Print

program:
E50XX Program to be loaded, XX, did not use mandatory coordination
option and is left disabled.
\ESIXX _Transfer of program XX from mass store was not successful,

so program is left disabled.

Configuration of SYSLOAD and the mass-store driver is discussed and illustrated in

Section IV,

SINCTION LI

SYSTEM FUNCTION CALLS

Programs communicate with the Executive (and, in turn, with other programs) by means
of system functions. A common entry point is used by all system functions, location '1001.
This location is referenced by each program by naming an external address constant, XLNK,
and giving it the value 1101001 in each program,. A common function handler serves as the
entry and exit point for each function. If the function requires a name search of the XPLT,

this is handled by the common function handler.

NOTE: Registers are not saved and restored during the execution of system
functions; this responsibility lies with the programmer.

VUNCTION 1 — REQUEST PROGRAM

(L) JSTH K LNK Function handler entrance
(L+1) DEC 1 Function number

(1.+2) BCIL 1, <A2> Name of requested program
(L+3) DAC <error return point>

(L+4) ocT <communication parameter>

(LA45) Normal return point

The requested program is not started up by this function but merely requested. The
Seheduler will start the program as soon as possible, The communication parameter (L.+4)
rmust be present whether or not the requested program uses communication, If it does, the
queueing routine will gueue the contents of L+4 for eventual transfer to the header of the re-

quested program,

E_r_c_)ij{eturn
?
n case of error, the krror Print program prints an error message on the ASR, and the
error return is made to the program. The A register contains an indication of the error:
A = 1 means no such program name; (A) = 2 means that the requested communication buffer is

full of parameters and, therefore, this request cannot be processed.

Examples
Two examples of the use of the Request program function are given in Figure 3-1, In the
first exarnple, program LK is reguested, Since this program does not use communication,

{44 contains zero, The execution of the program resumes at I+5 if there is no error and at

3-1

ABC if there is an error. In the second example, program SM is reguested., This program
uses communication. A pointer to a buffer within the calling program, therefore, is inserted
in word L+4. Execution of the program resumes at L+5 if there is no error and at ABD if there

is an error,

A. Request for program without communication

JST* XLNK FUNCTION ENTRANCE
DEC 1 1 = REQUEST PROGRAM
BCI 1, LK PROGRAM NAME IS LK
DAC ABC ERROR RETURN ADDRESS
oCT O NO PARAMETER

B. Request for program with communication

JST* XLNK FUNCTION ENTRANCE

DEC 1 1 = REQUEST PROGRAM
BCI 1, SM PROGRAM NAME IS SM
DAC ABD ERROR RETURN ADDRESS
DAC SBUF POINTER TO PARAMETERS

In example A, no parameter is passed. In example B, the
parameter is a pointer to location SBUF, This is the start
of a buffer containing information for program SM.

Figure 3-1, Examples of Request Program Executive Function

FUNCTION 2 - SCHEDULE LABEL

(L.) JST* XLNK Function handler entrance

(L+1) DEC 2 Function number

(L+2) BCI 1, <A2> Name of program in which
) label is to be scheduled

(LA+3) DAC <error return point>

(L+4) DAC <label to be scheduled>

(L+5) Normal return point

As shown above, the programmer knows in advance which label is to be scheduled, It
will often be the case, however, that this information will be filled in by another part of the

program during execution,

The major use of the Schedule Label function allows a program which services another
to call the first one back after its service is complete, Drivers use Schedule Tabel in this way.
The calling program passes its name and label to the driver by means of the communication
option. When the driver has finished its write or read, it schedules the label that was passed
to it. In this case, it must fill in L+2 and L+4 each time the call is made, The program in

which the label is scheduled must be in the Wait or Running state,

Labels also are scheduled by the Interrupt Handler. These are queued and automatically

handled by the Executive,

Forror retuarn s handled as follows . In case of crror, the orror PPring prosrans pints an

crror nessape on the ASIG and the error return is taken to the program, FThe A repgister

contains an indication of the error: (A) = 1 means no such program name; {(A) = 2 means that
the label cannot be scheduled even though the program exists., The second case happens when

the program's header is full of labels or the program is not active .

FUNCTION 3 — CONNECT CLOCK

(L) JST* KLNK Function handler entrance
(L+1) DEC 3 Function number
(L+2) BCI 1, <A2> Program name to be connected
(L+3) DAC <error return point>
(L+4) DEC <time until first executions>
(L.+5) DEC <interval between subsegquent
executions>
(L+6) DEC <base frequency (see Table 3-1)
and schedule label flag>
(L+7) Normal return point

This function is used to connect a program to the clock for automatic initiation by the
Clock program. The Clock program initiates a connected program by means of 2 Request
program or 2 Schedule Label function. This means that a program may be entered at its start
address or reentered at a user-specified label. Several options are available using variations

of the basic calling sequence shown above.

A program may be requested on a periodic basis by specifying the name of the program
in L+2, the time until first execution in L+4, the interval between executions in L.15, and the
base frequency in L+6, A label may be scheduled in a program on a periodic basis by setting

bit 1 of the base frequency and loading the label into the A register prior to executing the

Connect Clock function, If the interval specified in the calling sequence is set to zero, the clock
program will automatically disconnect the object program from the clock when the object pro-
gram falls due. The Clock program will then either request or schedule 2 label in the object
program, [his allows a pro.gram to be initiated once only from the clock, and the initiated

program need not disconnect itself to prevent periodic execution,

A program may delay itself for a specified length of time by executing a Connect Clock
function with a base frequency greater than 3. The interval should be set to zero. Upon

expiration of the time delay, the program is disconnected and scheduled for resumption at

L+7.

Table 3-1 lists the available base frequencies.

Table 3-1. Base Frequencies for Clock Calls

Base Frequency Meaning

0 Time until first execution is absolute time of day inminutes,
Interval between executions is in minutes thereafter,

1 Time until first execution is in 50-ms units, Interval
betweer. executions is in 50~-ms units,

tion

2 Time until first execution is in seconds, Interval be-
tween executions is in seconds,

SXecu

For pericdic
¢

3 Time until first execution is in minutes, Interval be-
tween executions is in minutes .

4 Time delay until resumption of execution is in 50-ms

units , 9w
& =
. . X . : : C s s
5 Time delay until resumption of execution is in seconds. {|* 7
L) "
. . . . c s . o

6 Time delay until resumption of execution is in minutes. |,

Error Return

In case of error, the Error Print program prints an error message on the ASR, and the
error return is taken to the program, The A register contains an indication of the error:
{A) = 1 means no such program; (A) = 2 means the maximum number of clock users in XCUT

has been exceeded,

Examples |

Figure 3-2 shows two examples of the Connect Clock function, In the first example, pro-
gram CE is to be called in 150 ms and every 450 ms after that, In case of error, execution
will resume at XYZ., Otherwise, it will resume at L+7. In case of error, execution will
resume immediately at XYZ, In the third example, a label is to be scheduled in program CE

every 100 ms after 1 sec.

FUNCTION 4 - DISCONNECT CLOCK

(L) JST* XLNK Function handler entrance

(L+1) DEC 4 Function number

{L+2) BCI 1, <A2> Name of program to be
disconnected

(L+3) DAC <error return point>

{L+4) DEC <base frequency (see Table 3-1)>

{L+5) Normal return point

This function requests the executive to stop periodic execution of a program or to cancel

the automatic resumption of a program in a wait state.

A, Request for program to be periodically executed

JS X ILINK FUNCTION ENTRANCE

DR 3 3= CONNECT CLOCK

PO 1, Ch FROGRAM NAMEL IS O

e XY7 FRROR RETURN ADDRISS

(DI 3 OFFSET (3 X 50 MS = 150 M)
D 9 INTERVAL {9 X 50 M5 = 450 M5}
DEC i I= 50 MS INTERVALS

B. Request for time delay before resumption of execution

JST* XILNK FUNCTION ENTRANCE

DEC 3 3 = CONNECT CLOCK

BCI 1,CE PROGRAM NAME [5 CE

DAC XYZ ERROR RETURN ADDRISS
DEC 9 OFFSET 9 X 50 MS = 45 MS3)
DEC 0 NO INTERVAL

DEC 4 ' 4 = 50 MS INTERVALS

C. Request for label to be periodically scheduled

LDA LADBIL LABEL TO BE SCHEDULED IN
A-REGISTER

JSE X LNK FUNCTION ENTRANCE

DEC 3 3 = CONNECT CLOCK

BCI 1, CE PROGRAM NAME IS CE

DAC XYz ERROR RETURN ADDRESS

DEC 20 OFFSET (20 X 50 MS = 1 SEC)

DEC 2 INTERVAL (2 X 50 MS = 100 MES)

ocT 100001 MS BASE FREQUENCY AND

SCHEDULE LABEL BIT

In example A, first execution of program CE is to.occur in
150 ms. Subsequent executions are to occur every 450 ms,
in example B, executlon of calling program is suspended for
450 ms and then resumed, In example C, label in A register
will be scheduled in program CI every 100 ms starting in

1 sec, These examples assume that standard clock period

of 50 ms is in use,.

Figure 3-2. Examples of Call to Connect Clock System Function

Frror return is handled as follows,
error message on the ASK, and the error return is taken to the program. The & register
(A) = 1 means no such program; (A) = 2 means that the

contains an indication of the error:

program was not connected to the clock,

In case of error, the Error Print progran prints an

.

ST

GRS

et

NOTE: The preceding four System Function Calls have an alternate format:
A program number, representing its priority, may be wged in pl

of the two-character program name, If a nwnber is specified, it
used directly to index down the XPET table to get to the raguired
program entry in the XPLT table {see Ssciiop IV}, Programse are
numbered from 1 upwards, program ! being the highest priority,
This feature considerably reduces system overkead, bul to preserve
flexibility in priority placement of programs, it should be used only
in exceptional cases,

FUNCTION 5 ~ CONNECT INTERRUPT

(L) JST* KXLNK Function handler entranse
(L+1) DEC 5 Funciion number
{(L+2) DEC <inter:upt reference number {se:
Appendix B)>
(L+3) DAC <errotr return point>
{L+4) DAC <start of interrupt response code
(L+5) Normal return point
B On return from a successful Connect Interrupt call {at L+5), the address of the elevenih

word of the interrupts' device list in XIDT is returned fo the caller in the A register.

¢ address may be the start location of configuration data for the device {see Section 1V for more
a -
Eg‘ information on the XIDT table),

Error Return
In case of error, the Error Print program prints an srror message on the ASR, and the
error return is taken to the program . The A register contains 2 2, signifying that the interrupt

is already connected.,

Example

Figure 3~-3 shows an example, Interrupt number 2 {the high-speed pape:

to be connected, In case of error, execution is to rezsums at EEE, The inferrupt regponss

code starts at RRR,

JST* XLNK FUNCTICON ENTRANCE

DEC 5 5 = CONNECT INTERRUPT
DEC Z 2 = PAPER TAPE READER
DAC EEE FRROR RETURN ADDRESE
DAC RRR START OF INTERRUPT CCGDE

Figure 3-3, Example of Call to Connect Interrupt Executive Function

FUNCTION 6 — DISCONNECT INTERRUPT

{L JST=* XLNK Function handler entrance
{L+1) DEC 6 Function number
{(L+2) DEC <interrupt reference number (see
Appendix B}>
{L+3) Return point

This function informs the Fxecutive that the calling

to the named interrupt.

FUNCTION 7 — TERMINATE

(L) JST* KLNK Function handler entrance
(L+1) DEC 7 Function npumber

This function enables the program to inform the executive
Control is returned to the Executive with no return to the program.
to terminate with an interrupt still connected, an error

gram will be disabled and left in core, Otherwise, all parameters associated w

of the program will be reset.

FUNCTION 8 — WAIT

(Lo) JST* KLNK Function handler entrance

program no longer wi

when it has finished execution,
If the program attempts

message will be printed, and the pro-

(L+1) DEC 8 Funciion number

This function informs the Executive that the program wishes to

it will be restarted at

a label or in its interrupt response code,

Q_OMPOUND FUNC TIONS

A Wait or Terminate function may be performed immediately after the execution of

suspend execution because

another function this allows compound functions, such as Request Program and Wait,

Label and Terminate,

achieved by regarding

and Connect Interrupt and Wait, to be specified. The compounding is

the function number as two bytes, the right-hand byte giving the primary

function and the left-hand byte giving the secondary function,

[ixamples

Figure 3-4 shows two examples of compound functions.

ith the running

Schedule

HEX

A. Request Program and Wait:

JST* XLINK

801 8 = Wait, 1 = Request Program

B, Schedule Label and Terminate:

Figure 3-4, Examples of Compound Functions

3-7

JS Tk X LNK
X 702 7 = Terminate, 2 - Schedule Label

WRITING NEW SYSTEM FUNCTIONS

New system functions maybe added to a system by the user, Refer to Section VI,

Special Capabilities of RTX~16, for details,

EXAMPLES OF SYSTEM FUNCTIONS

Two sample programs in Section VI show the use of system functions,

SECTION IV
CONFIGURA TION MODULE

The Configuration Module (XCOM) consists of a series of tables created by the user. In
this section, each table is described, and rules are given for generating it. A sample con-

figuration module is presented at the end of this section (Table 4-3).

XCOM HEADER
The XCOM header consists of a list of SUBR pseudo-operations which allows the loader

o link the XCOM to the Executive. There is a SUBR for each major table and others to special

entry points. A REL pseudo-operation should be placed at the end of the list. The format is:

SUBR XPLT
SUBR XPET.
SUBR XIDT
SUBR XIiDl
SUBR XIDe
SUBR XPCT
SUBR XCUT
SUBR XIVT
SUBR XLPT
SUBR XFET
SUBR XDCT
SUBR XsPT
SUBR XPEFP
SUBR XEXA
SUBR XINT
SUBR ER
SUBR KBI
SUBR CLKZ
SUBR CLK3
SUBR MSD
SUBR LLO1
REL

Systems having no mass-store device should use the following formm of the SUBR MSD and

SURR LOI:
SUBR MSD, XPLT

SUBR LOI
1,O1 BEQU O
REL

In this case, the REL must follow the LOL EQU O,

XPLT - EXECUTIVE PROGRAM LIST TABLE

This table defines all the preograms in the RTX-16 system; it is central to all operations
of the Executive. There must be an entry for every program in the system, including device
drivers. The format of the table is:

XPLT EQU

P1 BCI 1, P1 1st entry
P2 BCI 1, P2 2nd entry

PN BCI 1, PN Nth entry

PZ OCT 0 End-of-table entry

The format of each entry is:

<L.abel> BCI 1, <program name>
OCT <start address>
BSZ 1 Status

OCT <options>

OoCT <coordination>

OCT <comrnunication>
OCT <secondary storage>

The table must start with XPLT EQU * and end with a word containing zerc. An entry
may be four, five, six, or seven words long, depending on the options in use. . The first word
of each entry must have a unique label to be used by table XPET. The order of the entries in

the XPLT table is not significant, because their priority is established by XPET., Each entry

contains the following information.

Weord 1: Contains the unique two-character name of the program (in ASCII),

Word 2: Contains the address of the location at which the program is to be
started.

Word 3: Contains all dynamic information pertinent to execution of the

program (see Figure 4-1).

Word 4: Indicates which of the coordination, communication, secondary
storage, and relocated base sector options are in use. If the
program is to be mass-store resident, it also contains the size
in segments (128-word blocks), and the starting segment number
in core (see Figure 4-2 for exact bit assignments).

Word 5: This optional word is used by the Executive to ensure that this
program runs only when it conflicts with no other, and that no
other program which would conflict with it can run concurrently
(see Coordination Option in Section II).

Word 6: This optional word specifies the programs' base sector, and which
queueing subroutine and which buffer are to be used for passing
parameters to the program. Subroutine and buffer numbers are
determined when configuring table XPCT (see Figure 4-3 for
exact bit assignments).

10 1 12 13 14 15 16

Yy

mwwmn [TT11..

‘ PENDING COUNTER

— PROGRAM WAITING

OGRAM
PROG INTERRUPTED WHILE EXECUTING

RAN ONCE*
PROGRAM REQUESTEDR

— PROGRAM HAS BEEN STARTED

L—*— PROGRAM DISABLED
MASS-STORE RESIDENT BUT PRESENTLY IN CORE

COMMUNICATIONS REQUEST ACTIVE

""" RUN AGAIN REQUESTED

All bits are 0 unless conditions they signify are true.

*Set by Terminate function. May be checked by user programs in cases when repetition
of initialization togic is not desired.

Figure 4-1. Bit Assignment of Status Word

\ — —’ COORDINATION QPTION U5
COMMUNICATION AND/C
BASE SECTOR OPTION UstD

T T MASS STORAGE OPTION USED.

3

L,,._ STARTING SEGMENT {N CORE (USED BY MASS STORAGE URIVERS)
THESE BITS MAY BE ZERO IF PROGRAM IS CORE-RESIDENT.

b i e PROGRAM SIZE IN 128-WORD SEGMENTS. MEEDED ONLY
FOR SECONDARY-STORAGE-RESIDENT PROGRAMS.

RELOCATEL

Figure 4-2. Bit Assignment of Option Word

1 2 3 4 5] 7 8 9 10 11 17 13 i4 15 15
l E I l |
L L) | L 4 I) 1 1 s 1 i
) i P A
- v
4 '

L—« COMMUNICATION BUFFER NUMBER

COMMUNICATION QUEUEING SUBROUTINE NUMBER

RELOCATED BASE SECTOR

SET BY SOME PROGRAMS WHICH USE SPECIAL SCHEDULE LABEL FEATURE OF FIFO

Figure 4-3. Bit Assignments of Cormnmunication Woxd

Word 7: This optional word defines the programs’ location on the mass slorage
device. Mass storage is divided into segments of 128 words, numbered
consecutively from 0. This word identifies the first segment in which

the program resides on mass storage.

There are five special cases in the XPLT table:
Programs CL, EP, KB, LO, and SM,

Program CL is the Clock program, which is part of the .Txecutive. Its entry must be

exactly as folilows:

CL BCI 1,CL
XAC CL
OoCT 221
oCT 0

Program EP is the Error Print program. Its entry should be as follows:

ER BCI 1, EP
XAC EP
BSZ 1
OoCT 1 Coordination used for ASR device
oCcT <coordination bit(s)>

Program KB is the Keyboard utility program. A minimal entry for this program is shown

below:; however, the user should refer to Doc., No. 70130072519, OP-16 Utility Programs, for

further information.

KB BCI 1,KB
OoCT <start address>
BSZ 1
OCT 1 Coordination used for ASR driver
OCT <coordination bit(s)>

Program LO is the System Loader (SYSLOAD) used by the Executive to bring mass-store

resident programs into core for execution. Its entry should be as follows:

LO BCI 1,LO
XAC LO
BSZ 1
OCT 2 Communication used
ocCcT <subroutine and buffer numbers>

Program SM is the Mass-Store driver. Since itmay be used for both program loading and
data transfers, it may have one or two entries in XPLT, depending on whether the user wishes

to have the same or different priorities for these two operations. For the different priority case

the following entries must be made.

* PROGRAM LOADING ENTRY

MSD BCI 1I,ML
OCT <start address of mass-store driver>

BSZ 1

oCT 3 Communication and coordination used

OoCT “coordination bit> same as for SM

oCcT <subroutine and buffer> buffer must be different from SM
b DATA TRANSFER ENTRY
SM BCI 1,SM

OCT <gtart address of mass-store driver>

BSZ 1

oCT 3 Communication and coordination used

oCT <coordination bit> same as for ML

oCcT <gsubroutine and buffer> buffer must he different from ML

Note that the two entries must be coordinated so that they are mutually exclusive.

For the same priority case, only the "DATA TRANSFER ENTRY is required, in which

case the first word should be MSD BCI 1,8M. Coordination is not necessary.

XPET - EXECUTIVE PROGRAM ENTRY TABLE

This table consists of a list of DAC pointers to program entries in XPLT (the pointers are
to the first word of each entry). The order in which the pointers are arranged determines the
priority of the programs to which they relate. The highest priority program has its XPLT entry
pointer at the top of the list. The last entry must be a DAC to the location containing OCT 0 at
the end of XPLT, The format of the tables is as follows.

XPET QU

DAC <gtart address of highest priority programs XPLT entry -

DAC <gtart address of second highest priority programs XPLT entry~
DAC “start address of lowest priority programs XPLT entry-

DAC “start address of dummy XPLT entry-

There are three special cases in this table for the Clock program (CL), the Keyboard
utility program (KB), and the System Loader (L.O), The pointer to prograrm CL, CL1 DAC CL,
is always present and must be at the top of the list. The pointer to program K5, if present,

should be KB1 DAC KB. The pointer to program 1.0, if present, should be LOI DAC LO.

XIDT - EXECUTIVE INTERRUPT DEFINITION TABLE

This table contains the information necessary to identify an interrupt when it arrives and

to cause control to be transferred to the user's interrupt response code.

It consists of three parts. The first (labelled XIDT) contains all the data specific to an
interrupt. The second (labelled XID1) is used by the Executive to keep track of the interrupt

status of the system. The third (labelled XID2) is used by the Executive to locate the interrupt

data in XIDT.

XIDT

This table consists of a nuinber of entries, called device lists, one per interrupl. The
device lists must be ordered in the priority with which the user wighes them (o be handied, with
the highest priority interrupt first. The format of the table is as follows.

XiDT EQU g
Device list of highest priority interrupt

Device list of lowest priority interrupt
IH20 XAC IH20
1H40 XAC IH40

Each device list must contain the following information.

<label> SKS <interrupt identification code>
NOP
JMP <address of first word of next device list>
XAC 1H40

<label> JST* #-1
JST * IH20
DAC ok
DEC <interrupt reference number>
OoCT <index to SMK instruction for interrupt>
OCT <mask bit for interrupt>

Word 1: Is an SKS <'I4>, skip if not interrupting, instruction. The octal

number is the code which identifies a certain interrupt. After
the last entry in the table, the following instruction must be
inserted.

JS5T* IH40

This jump causes an 'interrupt not identified! error message (E11$3).
The first SKS must be preceded by XIDT EQU * or labelled XIDT,

Word 2: Should be a NOP instruction, except in the special cases of the real-
time clock and ASR, When an interrupt is connected, the NOP is
replaced with a JMP *43 that eventually sends control to the user's
interrupt response code. The JMP %43 is restored to a NOP when
the interrupt is disconnected. Two interrupts, the real-time clock
and ASR, are connected from the start. The user fills the JMP's
in directly instead of NOP's. (see below).

Word 3: A JMP instruction to the first word (SKS instruction) of the next
device list. For the last device list, this may be the JST * IH40
referred to under Word 1.

Word 4: Should contain an XAC pointer to IF40, except in the special cases
of the real-time clock and ASR (see below). The interrupt response
address is placed in this word when the interrupt is connected.

Word 5: Always contains a JST* *-1 for jumping to the user's interrupt
response code. It should have a unique label for use by the
XID2 table.

Word 6: Always contains a JST* IH20 for returning to the Interrupt Han
after the user's response code is finished.

Word 7: Should be left blank (OCT 0 or DAC *¥), except in the special case
of the real-time clock {see below). It is used by the Executive io
store the address of user's XPET entry.

Word 8: Contains the interrupt reference number (see Appendix B) for the
particular device associated with this entry.

Word 9: identifies which SMK instruction is used to enable the device to
interrupt (see Word 1 of XID1)., Iits value will be 1, 2, 3, etc.,
depending on the rank of the SMK in XID1.

Word 10: Contains the mask bit for the interrupt (see Table 4-1 for main-
frame mask bits).

This minimum device list may be followed by any number of device configuration parameters,
as required. The address of the first of such parameters is returned to a user in the A register

immediately after an interrupt is connected.

Ag already mentioned above, one exception to the format described is the rsal-time clock

device list, which may be abbreviated as follows.

X501 SKS 120
' IMP *43 Interrupt always connected
JIMP X502 Jump to next SKS
XAC CL Address of interrupt response code for clock
XLol J8T* a1
JST* 1H20
DAC CLl1 Address of XPET entry for clock

Note that words 8, 9, and 10 of the device list are not required, because the clock is al-
ways connected. However, the clock program does require two configuration parameters which
should follow the list above:

CLK?2 DEC <number of clock interrupts per second>
CLK3 DEC- <number of hardware intervals between interrupis>

 Another exception is the ASR device list as follows:

- XS03 SKS ‘404
IMP 43 Interrupt always connected
JMP XS04 Jump to next SKS
XAC Al Address of ASR interrupt monitor routine in Executive
X1.03 JST * Y |
JST* | 1H20
DAC Hox
DEC 4
OCT 1
OCT 40

At the very end of the XIDT table there must be two XKAC's to appropriate portions of the

Interrupt Handler:

IH20 XAC IH20
1140 XAC IH40

XID1

This table has the following format.

XiD1 DEC <number of SMK instructions in system>

ocT <1st SMK raask> 3
b Set 1

OCT <Nth SMK ask>)

SMK <lst SMK instruction> -\
3 Set 2

SMK <Nth SMK iustruction>

Word 1: Contains the number of different interrupt mask SMK instructions

in the system. It must ke labelled XIDI1. If only a main frame is
present, it should contain a 1. If both a main frame and an RTI
are present, it should contain a 2, etc. Each set of the words,
below, contains as many words as there are different SMK
instructions.

Set 1: These words have 1's in each of the bits which correspond to
interrupts that are presently connected. The first word (main-
frame mask) should be initialized to OCT 41, meaning that the
real-time clock and ASK are connected immediately.

Set 2: The first word should be an SMK '20, the main-frame mask-
setting instruction. Each following word is the SMK instruc-
tion for each of the other interrupt mask registers (RTI, etc.)

XID2

This table has the following format.

XIiDz2 DEC ~<number of device lists in XIDT (N)-
DAC <address of 5th word of lst device list>

DAC <address of 5th word of Nth device list>

The table consists of a negative count of the number of device lists (this count must be
labelled XID2), followed by a DAC pointer to the fifth word (the JST * *-1) of each device list.
There is no significance in the relative position of the pointers, except that those interrupts

most frequently connected and disconnected should be at the top'end.

Table 4-1. Main-frame Interrupt Bits (SMK '0020)

Bit Octal Value Device
1 100000 : Magnetic Tape Control Unit 1
2 140000 Magnetic Tape Control Unit 2
3 20000
4 10000 Moving -Head Disk
5 4000 I/O Channel 1
6 2000 . 1/0O Channel 2
7 1000 1/0 Channel 3
8 400 Small Mass Store
9 200 Paper-Tape Reader
10 100 Paper-Tape Punch
11 40 ASR
12 20 Card Reader
13 10 Card Reader /Punch
14 4 Line Printer
15 2
16 1 Real-Time Clock

YPCT - EXECUTIVE PROGRAM COMMUNICATION TABLE

This table establishes communication buffers and identifies the parameter passing sub-

routines required for program communication. Its format is as follows.

XKpPCT DEC “number of queueing subroutines (N)->
DEC <number of communication buffers (M)>
RKAC <address of queueing subroutine 1~
Set 1
XAC <address of gueueing subroutine N~
DAC <address of buffer 1 (label 1)~
Set 2
DAC <address of buffer M (label M)- .
DAC XPCE pointer to end of buffers
BUFFER 1
<label 1~ DAC w42 In pointer
DAC “+1 Out pointer
BSZ <gsize of buffer~>
Set 3
* BUFFER M
<label M~ DAC w2 In pointer
DAC %41 QOut pointer
BSZ <gize of buffer>
END OF BUFFERS
XPCE OCT 0

Word 1: Specifies the number of queueing subroutines in the system
{a maximum of seven .s allowed). It must be labelled XPCT,

Word 2: Specifies the number of communication buffers in the system.
Set 1: These words are pointers to the queueing subroutines which
are usually external to XCOM. There must be as many pointers
as specified by Word i. An entry for the standard queueing

subroutine FIFQO would be XAC FIFQ,

Set 2: These words are peinters to the communication buffers.
‘ There must be as many pointers as specified by Word 2.
After the last pointer to a buffer is a pointer (DAC XPCE) to
a zero word that follows the last buffer (XPCE OCT 0).

Set 3: The buffers themselvis are defined here. Buifers for the
standard queueing rouvine FIFO must contain two words
more than the user neesds for bookkeeping purposes (In
pointer and Out pointer). The first word of each buffer
should have a unique label. Buffers to be used by other
queueing subroutines inay have other requirements.

XCUT - EXECUTIVE CLOCK USER'S TABLE

This table is serviced by the Executive and the Clock program and has the following

. format.
XcyurT DAC w44 Header
BSZ 3
DAC w45 1st Entry
BSZ 4
DAC 5 (N-1)th entry
BSZ 4
BSZ 5 Nth and last entry

Where N is the maximum number of simulitaneous clock users.

XIVT - EXECUTIVE INTERRUPTED VAEIABLES TABLE

This table is where the Executive stores the registers and status of interrupted programs.
The user should decide for himself how many programs he is going to allow to be in an inter-
rupted state at any one time. This limit governs the size of the table, and when the table is
full, no more programs are interrupted. The Executive concentrates on completing interrupted

programs before starting up any new programs.

Five words are required for each interrupied program, thus the amount of variables
storage space Z can be calculated as:

Z=5(1=vy)

low to be in an interrupted state at the same time.

that can never run together because they share com

The format of XIVT is as follows.

XIVT

DEC
BSZ

Y
Z

where Y and Z are as defined above.

YLPT - EXECUTIVE LABEL PARAMETER TABLE

by the interrapt response code.

marker.

name of the program in which the label should have been scheduled.

This is a table in which the Executive temporarily stores labels that have

X LPT

BSZ
DEC

<2 times the number of interrupts-~
-1 End of table

Its format is as follows.

where ¥ is the maxirmum number of programs, or program priority groups, the nsor

wmon coordination bits.)

(A 'priority group'is a group of programs

been scheduled

The table consists of two words for cach interrupt in the system and an end-of -table

Should the table become full, the e

ET - EXECUTIVE FUNCTION ENTRY TABLE

This table defines the sy

XrET

Word 1:

Set 1:

DEC

XAC
XAC
XAC#
XAC
XAC

XAC
KAC
XAC

XAC
DAC

XAC

Contains the largest function number in the system; must be

rror message L12XX is printed, where XX is the

stem functions in a system and has the following format.

<largest function number in system (N)>

RP
SL
cC
DC
Cl
Dl
TE
WA

Address
Address
Address
Address
Address
Address
Address
Address

of function
of function
of function
of function
of function
of function
of function
of function

<address of function 9~

s Dummy for function 10

<address of function N>

1

2
3
4
5
6
7
3

Set 1

Set 2

labelled XFET, For systems without user -written functions,
this word should be XIFET DEC 8.

A mandatory list of pointers to the start locations of the eight

standard functions in the Executive.

The position in the list

corresponds to the function number; that is, the first entry is

function number 1, the second entry function Z, etc,

The in-

direct flag on the first four XAC's indicates that a name search

ig required by the function.

4-11

Set 2: An optional list of poin:ers to additional user-written functions.
For every function of zumber less than that of the largest
function number in the system that is not incorporated, dummy
items (DAC **) must bz used. (See Section VIII for information
on how to write new system functions.)

KINT - EXECUTIVE INITIALIZATION LCTATION

This is a location which contains a cointer to the user’s initialization control subroutine.
The format of this pointer is:
XINT XAC INIT
if the subroutine (INIT) is external to XCUOM, or:
XINT DAC INIT

if the subroutine is internal to XCOM,

If no user initialization is required the format is:
XINT XAC sC
to link directly to the Scheduler. (See Section VIII for details on writing the 'Initialization

Control Subroutine. ')

XDCT - EXECUTIVE DEVICE CONFIGUEATION TABLE

This table contains configurable information required by certain device drivers. Its

format is as follows.

XDCT DEC <Mass-store data>
DEC <ASR data>
DAC <Pointer to RO~35 Alarm Typewriter data>
DAC <Pointer to Model B Logging Typewriter data> » Set 1
DEC <Line Printer data>
DEC <Card Feader or Card Reader /Punch data>
DEC <Magnetic Tape Unit data> %
AN

- . . Set 2
RO-35 Alarm Typewriter data
Model B Liogging Typewriter data Vs

Set 1: A variable-length, fixed sequence of single-word entries. FKEach

word relates to a specific device. This word may contain data
or may be a pointer tc two or more data parameters. The se-
quence of entries may be expanded or contracted but never
changed.

Set 2: All multiparameter data groups are to be placed here after
the last fixed -sequence entry., Data group sequence is not
significant, because access is made via the pointers in Set 1.

4-12

Refer to the specific device-driver manuals for further information on the duln vl
User-written device drivers may use the device lists in the XIDT table for placement of con-

figurable information (see XIDT table description in this section).

YSPT - EXECUTIVE SPECIAL PARAMETERS TABLE

This table contains those special parameters that do not fit properly in any of the other
tables. It also serves as a predefined expansion area for user or system needs. Its format

is as follows:

XSPT oCcT <Relocated Base Sector option~>
XPFP OCT <power failure interrupt response address>
XEXA OoCT <Extended Addressing option~
OoCT <low-core protection limit~
OoCT <high-core protection limit-
oCT <base segment number for overlays~
Word l: Should be nonzero when the Relocatable Base Sector option is

present in the user's hardware configuration or zero if it is
not present. It must be labelled XSPT.

Word 2: Contains the address of the power failure interrupt response
code. This address will be inserted in location '60 by the
Executive at system startup. If a halt is sufficient, the user
may use 1023, which will cause the system to halt at location
11024. It must be labelled XPI'P,

Word 3: Should be nonzero when the Extended Addressing option is
present in the user's hardware configuration or zero if it is
not present. It must be labelled XEXA,

Words 4, Contain information required by the keyboard utility programs.
5 and 6: (See Doc. No. 70130072519, OP-16 Utility Programs, for
details.)

XOOM SIZ K LSTIMATION

The approximate formula for estimating the size(s) of the RTX-16 Configuration Module

(in words) . is as follows.
S=5A+B4+C4+D+13E42F +G+3H+I+5T 45K+ L+42
where:

A = Number of programs in the system, including RTX-16 Clock
program, RTX-16 Error Print program, RTX-16 Keyboard
program, device drivers and user programs.

B = Number of programs using the coordination option of the
Executive. (All mass-store resident programs must use this
option; also the Keyboard, ASR Driver, and Error Print
programs if any two or all three are present; and any user

programs requiring the option.

C = Number of programs using the communication or relocated
base sector option of the Executive.

D = Number of programs residing on the mass-store device.

D) - Number of hardware devices which generate interrupts.
(Examples are real-time clock, 1/O devices, etc.)

4-13

¥ = Number of different SMK _astructions for interrupt masking.
(Examples are SMK '20 fc main frame, SMK 620 for RTI,
etc.)

G = Number of parameter-passing subroutines. (One is standard
and is supplied with the svstem.)

H = Number of buffers for saving parameters. (Generally, each
program using the communication option will need its own
buffer.)

I = Total number of buffer locations for saving parameters.

(Example: five programs wse the communication option, and
a maximum of four reque.is will be saved for each program:
I=(4) (5) = 20.)

J = Maximum number of programs to be connected to the clock for
periodic execution. (Programs are connected by using System
Function 3.)

K = Maximum number of programs which may be in an interrupted
state at any given time. {f the maximum is exceeded, no
error occurs, except that the priority scheme for determining
the next program to be exzcuted is not used.)

= The number of user-written system functions.

=
|

CONFIGURING SAMPLE SYSTEM

This subsection describes a sample system and shows its Configuration Module. All the
programs used as examples throughout this manual are included in this sample system. The
hardware supported is either a Model 316 or 516 main frame with 16K of memory, a Real-
Time Clock, a High-Speed Paper-Tape Punch, a High-Speed Paper-Tape Reader, a Mass
Store, an ASR~33, a Line Printer, a Card Reader /Punch, a Magnetic Tape Unit, and an RO-35

Typewriter connected via a Real-Timse Interface.
Core Map
Figure 4-4 shows the core map. The core-resident part of the system is in sectors 1

through 11 octal. All programs above sector 11 are mass-store resident.

Mass ~-Store Layout

Table 4-2 shows the storage allocation on the Mass Store.

Configuration Module

Table 4-3 is an assembly listing of the Configuration Module for this system. Comments

have been included where appropriate for clarification.

SECTOR SECTOR SECTOR
SECTOR
0
4 Jero 11 4 SM/ML 99
- MO
- - RT -
o 12 23
- - AS -
] BAsiC
EXEC
- b MT - PR
2] 13
24
- 4 pp
UNUSED
s
EPMOD AT cT
3 14 4 25 -
FIFO
MDRQ UNUSED UNUSED
’ LT » 7 RO
4 1 Xxcow 15 4 .
UNUSED UNUSED
HD)
5 - UNUSED 16 27 A
o]
SYSLOAD UNUSED
BASE 3
T SECTOR RC -
s - FOR 17 = 30 - TP
PROGRAM
40 o
KB pC
e e e e e —
;] 20 4 © co 31 -
— KB -
LP
32
10 _ 21 - » <1 UNUSED
UNUSED ‘

Long ticks separate sectors; short ticks separate segrments.
All programs above Sector 11 are mass-store resident.

Figure 4-4. Core Map for Sample System

4-15

SECTOR SECTOR SECTOR
SECTOR
O 4 Sero 11 4 SM/mL 27
-1 -5 -
J— MC
. . RT .
- 12 23
- -3 AS o
BASIC
EXEC
- - < PR
MT
2 13
. 24
- . PP
UNUSED
EPMOD AT cT
3 14 = 2%~
FIFO
MDRQ UNUSED UNUSED
7 LT) RO
4 1 xcom 154 %
UNUSED UNUSED
HD
5 -t UNUSED 16 - 27 -
SYSLOAD UNUSED
BASE §
SECTOR RC N
¢ - FOR 17 - 30 TP
PROGRAM
K8 PC
cmmeg] amm mee e e e WO | FRvm——
; 20 4 @ co 31 o
— KB]
R - y
LP
32
10 7 217 - UNUSED
UNUSED ‘

Long ticks separate sectors; short ticks separate segments.
All programs above Sector 11 are mass-store resident.

Figure 4-4. Core Map for Sample System

4-15

Table 4-3. Sample Configuration Module

<« XCOM HEADER

3

*

¥ ¥ ¥ ok X K ¥ ¥

(P

B

Oy ¥ ¥

-

PK

P

SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
REL

NOTE:

Lol

KPLT
XIDT
XIbl
xiba
XPCT
XCUT
XIVT
XPET
XLPT
XFET
XINT
XDCT
XSPT
XPFP
XEXA
KB1
ER
CLK2
CLKS
MsD
L0l

IF N0 PROGRAMS ARE MASS-STORE RESIDENT THE LAST

ENTRIES IN THE ABOVE HEADER MUST Bk:
SUBR MSD,XPLT

SURk LOI

EQu 0

REL

XPLT = EXECUTIVE PROGRAM LIST TABLE

LT EQl x
CLOCK PROGHAM
3C1 l,cL PROGRAM NAME
XAC CL STAKT ADDRESS
ocT w2l STATUS (STAKTED/WAITING/INT,
0CcT] NOD OPTIONS
PAPER TAPE READEK DRIVER
BCI 1,PR
OCT 24006
Bz |
ocT 011207
ocT 0 NO CONFLICT
OCT 00104
0CT 320
ASR DRIVER
BCI 1,AS
0CT 12408
BSZ 1
OCT 010527
OCT 2000 COORDINATION FOR ASR DEVICL
oCT 00102
OCT 314
ERROR PRINT PROGRAL
BCI 1,EP
XAC EP
STAN

CONNECTELD

Table 4.3 (cont). Hample Configuration Module

wm # ¥
=

MT

+#*

S

PP

COCRDINATION FOR ASR DEVICE

FOi: PROGRAM LOADING

COGRDINATION WITH SM

FOE DATA TRANSFERS

COCRDINATION WITH ML

NO CONFLICT

NO CONFLICT

COGRDINATION FOR SECTOR 20

COCADINATION FOR SECTOR 20

ocT 1

0CT 2000

SYSTEM LOADER

BCI 1,LO

XAC LO

Bsz |

ocT 2

0CT 00105

MASS STORE DRIVER ENTRY
BCI 1, ML

oCT 11006

BSZ i

ocT 3

ocT 2

0CT 00101

MASS STORE DRIVER ENTRY
BCI 1,5M

0CT 11006

BSZ 1

oCT 3

ocT 2

ocT 00121

MAG TAPE DRIVER
BCI 1,MT

0CT 13006

BSZ 1

0CT 014547

ocT O

0CT 00112

0CT 330

LINE PRINTER DRIVER
BCI 1,LP

0CT 21007

BSZ 1

0CT 015047

ocT 0

OCT 00114

0cT 301

CARD READER DRIVER
BCY 1,4CI

OCT 20010

Bsz |

OCT 021007

oCT 10000

0CT 00116

OCT 324

CARD PUNCH DRIVER
BCI 1,C0

OCT 20010

Bsz 1

0CT 021007

OCT 10000

0CT 00120

0cT 351

PAPER TAPE PUNCH DRIVER
BCI 1,PP :
OCT 24406

Table 4-3 {cont)., Sample Configuration Module

D

MC

%
—

0 ¥ ¥

BSZ |

ocT 011227
ocT O

otT 00103
oCT 316
RO=35

BCI 1,RO
oCT 26006
BSZ |

oCT 015307
ocT O

0CT 00200
oCT 360
MASS STORE TEST
BCI 1,HD
0oCT 16006
BSZ |

OCT 014707
ocT O

0OCT 0011}
ocT 333
MAG TAPE TEST
BCI 1,MC
0OCT 22006
BSZ |

oCT 041107
ocT 0

ocT 00113
oCT 304
LINE PRINTER TEST
BCI 1,LT
oCT 15006
BSz |

OCT 014647
ocT 0

oOCT 00115
ocT 336
PAPER

BCT 1,RC
0CT 17006
BSz |

oCT 014747
ocT 0

oCT 00107
oCT 34l
ASR TEST

BCI 1,AT
0CT 14006
BSZ !

OCT 014607
ocT 1

ocT 00106
aCT 346
PAPER

BCI 1,PC
ocT 17606
BSz !

0CT 004777

TYPEWRITER DRIVER

TAPE READER TEST

TAPE PUNCH TEST

NG CONFLICT

NO CONFLICT

NO CONFLICT

NO CONFLICT

NO CONFLICT

NO CONFLICT

" COORDINATION FOR ASR DRIVER

Table 4-3 (cont). Sample Configuration Module

T X ¥

¥ ¥ = x
ot

ocT 0 NG CONFLICT
0CT 00110

0CT 344

CARD READER/PUNCH TEST

BCI 1,CT

oCT 25006

BSZ 1

oCT 015247

ocT 0 NG CONFLICT
oCT 00117

0CT 355

RO-35 TEST

BCI 1,RT

OCT 12006

BSz |

0CT 010507

ocT © NO CONFLICT
0CT 00122

0CT 363

ON-LINE TRACE PROGRAM

BCI 1,TP -

oCT 27006

BSZ |

ocT 2

ocT 00123

KEYBOARD UTILITY PROGRAM

BCI 1,KB

ocT 7003

BSZ I

ocT 3

ocT |

OCT 06000 USES SECTOR 6 FOR

END QF . PROGRAM ENTRIES
0CT 0

* XPET - EXECUTIVE PROGRAM ENTRY TABLE
XPET EQU =
*

END OF XPLT TABLE

CCORDINATION FOR ASR DRIVER

BASE SECTOR

CL! DAC CcL HIGHEST PRIOKITY PROGRAN
DAC PR '
DAC AS
DAC ER

L0l DAC LO -
DAC MSD -
DAC SM
DAC MT
DAC LP
DAC CI
DAC Cco
DAC PP
DAC RO
DAC HD
DAC. MC
DAC LT
DAC RC
DAC AT
DAC PC
DAC cT
DAC RT

4-20

Table 4-3 {cont), Sample Configuration Module

*

LOWEST PRIORITY PROGRAM

Vi INTERA{UPT DEFINITION TABLES

* REAL TIME CLOCK (SPECIAL CASED

DAC
KB i DAC
DAC
sk
sk
* EXECUTI
IDT EQU
e
X501 SKS
JMP
JMP
XAC
XLOU JS T
JST*x
DAC
CLK2 DEC
CLK3 DEC
ES
* CARD
XS02 SKS
NOP
JNP
XAC
XL02 JSTx
JS Tx
DA
DEC
aC T
ocT

¥50% ShS
NOP
Ji
XhC

YLOE JST*
JS Tx
DAC
DEC
0CT
oCT

* ASR

XS04 SKS
JMP
JMP
XAC

XLO4 J5T=
JST*
DAC
DEC
oCcT
oCT

* MOVI

XS05 SKS
NOP
JMF
XAC

XLOS5 JST*
JS T
pacC
DEC

‘0020
*+3
X502
CL
ke §
IH20
CL1
20
-3

READER/PUNCH
‘0106

X503
1H40
ke]
I1HZ20
koK

g

{

10

PAPER TAPE REAJER

'04C1

XS04
TH40
- |

TH20

B

-

&
l
000200

INTERRUPT ALWAYS CONNECTED

NUMBER OF CLOCK INTERRUPTS PER SECOND
NUMBER OF INTERVALS BETWEEN INTERRUPTS

SKIP IF NOT INTERRUPTING INSTRUCTION
INTERRUPT TO RE CONNECTED

JUMP TO NEXT ENTRY

INTERRUPT RESPONSE ADURESS

JUMP TO INTERRUPT RESPONSE CODE
RETURN TO INTERRUPT HANDLER

¥PET POINTER STORAGE

INTERRUPT REFERENCE NUMBER

INDEX TO SMK INSTRUCTION

MASK BIT

TELETYPE (SPECIAL CASE)

0404

000040

NG HEAD DISC
0125

X506
IH40
*= 1
ITH20
ok

!

INTERKUPT ALWAYS CONNECTED

Table 4-3 (cont). sample Configuration Module

XLO6

XLO7

Xs08

¥L08

XLO9

1H40
IH20

X1D2

0CT 1

oCT 10000
PAPER TAPE PUNCH
SKS ‘402
NOP

JMP XS07
XAC IH40
JSTx %=1
JST#x I1H20
DAC Kk

DEC 3

0OCT i

oCT 060100
LINE PRINTER
SKS ‘0103
NOP

JMP X508
XAC IH40
JST* k=]
JSTx IH20
DAC *ok

DEC 5

oCT 1

0CT 000004
MAG TAPE UNIT
SKS ‘0410
NOP

JMP X509
XAC IH40
JST* k=}
JSTx IH20
DAC ok

DEC 7

0CT 1

OCT 100000
R0O-35 TYPEWRITER
SKS 0327
NOP

JsTx IH40
XAC IH40
JST* %=1
JST* IH20
DAC *ok

DEC 5

oCT 2

oCT 10000
XAC 1H40
XAC IH20
DEC -9

DAC XLO|
DAC XL02
DaC XL03
DAC XLO4
pacC XLOS
DAC XLO6
DAC XLO7
DAC XLO&
DAC XL.0S

INTERRUPT NOT IDENTIFIED

UNIDENTIFIED INTERRUPT RETURN ADDRESS
NORMAL INTERRUPT RETURN ADDRESS

NINE DEVICE LISTS
DEVICE LIST POINTERS

4-22

Table 4-3 (cont)., Sample Conliguration Module

X

*

1Dl OCT
ocT
ocT
SMK
SMK

*

* ¥XPCT =

* HEADER

XPCT DEC
DEC
XAC
XAC
DAC
DAC
DacC
DAC
DAC
vac
DacC
DAC
DAC
DaC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DacC
DAC
pacC
Dac
DAC

BUFFERS

N

USED
Ft o DAC

DAC

857

%

Useb
Fzo DAC

DAC

RSz

e

o

USED
DAC
DAC

o
Dol

gs
=
A

* USED

BF4 DAC
DAC
BSZ

* USED
BFS DAC
DAC

B37

2

41

¢
‘20
‘620

TWO SMK INSTRUCTIONS
MAINFRAME SMK MASK C(ASR AND RIC)
RTI SMK MASK

" MAINFRAME SMK INSTRUCTION

RTI SMK INSTRUCTION

EXECUTIVE PROGRAM COMMUNICATION TABLE

2

21
FIFO
MDRQ
BF1
BF2
BF3
BF4
BFS5
BF6
BF7
pre
BF9
BF1I0
BELL
BF1Z2
BF13
BFl14
BF15&
BFi6
BFL7
PELE
BFLIS

[RE kel

BFZO
BF21
XPCE

TWO QUEUEING SUBROUTINES
TWENTY-ONE BUFFERS
STANDARD QUEUEING ROUTINE
SPECIAL QUEUEING ROUTINE
BUFFER POINTERS

BY MASS STORE DRIVER (PROGRAM LOADING)

*+ 2
k4|
{

BY ASR DRIVER

42
*+ 1
5

I8 POINTER
OUT POINTER
PARAMETER STORAGE

BY PAPER TAPE PUNCH DRIVER

*+2,
E

5

BY PAPER TAPE READER DRIVER

*+ 2
LR
5 .

By SYSTEM LOADER

*+2
*+ |

[

4-23

Table 4-3 {cont). <ample Configuration Module

4 USED BY ASR TEST
BFS& DAC *42

D&c e+

B5Z 5

= USED BY PAPER TAPE READER TEST

RE7 DaC *+2
DAC *+ 1
BSZ 5

E'S
3 USED BY PAPER TAPE PUNCH T&ST
BFg DAC *+2

DAC 4§

BSZ 5
P
* USED BY MASS STORE TEST
RFg DAC k42

DAC ket |

BSZ 5
ke
* USED BY MAG TAPE DRIVER
BF10 DAC *+2

DaC *4]

BSZ 5

'3
* USED BY MAG TAPE TEST
OFil DAC *+2

pacC *+ 1

BSZ 5
*
* UsSED BY LINE PRINTER DRIVER
BFi12 DAC k42

DAC *+ |

BSZ 5

A USED BY LINE PRINTER TEST
BF13 DAC k2

DAC LS

BSZ 5

* USED BY CARD READER DRIVER
BF14 DAC *+2

DAC k41

BSZ 5

* USED BY CARD READER/PUNCH TEST
BFi5 DAC k42

DAC *+]

BSZ 5

* USED BY CARD PUNCH DRIVER
BFI6 DAC *+2

BAC K4]

BS7Z 5
*
#* USED BY MASS STORE DRIVER ¢(DATA TRANSFERS)
RF17 DAC *+2

DAC x4+ 1

BSZ 5
b
* USED BY RO-35 TEST
BFig DaC *+2

DAC *+ §

BSZ 5

Table 4-3 {cont). Sample Configuration Module

sk
* USED BY TRACE PROGRAM
BF1I9 DAC *+2
DAC k4 |
ERYA 2
s
* USED BY RO-35 TYPER |
RFz0 DAC *+ | IN POINTER
BSZ 5 PARAMETER STORAGE
DEC -1 END OF BUFFER MARKER
3
* USED BY RO=35 TYPLER 2
DF21 DAC *+]
BSZ 5
DEC -1
*
XxPCE BSZ i END OF BUFFERS
* XCUT - EXECUTIVE CLOCK UsER 'S TABLE
%
XCUT DAC K+ 4 EMPTY THREAD START
ns7 1 MILLISECOND Uin1TS THREAD START
BSZ i SECONDS THREAD START
BSZ i MINUTES THREAD START
1S
DAC x+5 ENTRY |
857 4
E3
DAC L) ENTRY 2
ﬁf‘z 4
%
DAC deA5 ENTRY 3
RSz 4
DAC *+5 ENTRY 4
D67 4
sk
BSZ 5 ENTRY S
£ XIVT - EXECUTIVE INTERRUPTED VARIASLES TABLE
sk
YIVT DEC 5 5 PROGRAMS MAY BE INTERRUPTED
Bsz - 30
*
XLPT - EXECUTIVE LABEL PARAMETER TADLZ
*xLPT BSZ 18 NINE INTERRUPTS IN SYSTENM
DEC -1 5D OF TABLE MARKER
sk
* XFET = EXECUTIVE FUNCTIONS ENTRY TABLE
XFET DZC e HIGHEST FUNCTION NUMBER IN SYSTL
XaC*x RP RE&ULST PrOGRANM
YAC* SL SCHEDULE LABEL
yaCx CC CONNECT CLOCK
XAC* DC DISCONNECT CLOCK
KAC FI CONNECT INTERRUPT
XAC DI DISCONNECT INTLrRKUPT
XAC TE TERMINATE
XAC WA WATT

% XDCT - EXECUTIVE DEVICE CONFIGURATION TABLE
¥DCT DEC 20 20-SURFACE MOVING HEAD DISC

DEC 1 ASH=32

DAC ROD POINTER TO RO-35 DATA

357 1 NOT USED

DEC 3 i LINE PRINTER ON CHANNEL 3

Table 4-3 {cont). Zample .Configuration Module

0cT 0 C4RD READER/PUNCH ON 1/0 BUS
DEC 2 MaG TAPE UNIT ON CHANNEL 2

* R0O-35 DATA

ROD DEC 2 NUMBER OF RO-35 TYPERS

DAC RODI PUINTER TO DATA FOR FIRST TYPER
DAC ROD2 PUINTER TO DATA FOR SECOND TYPER
ocP *327 AGXNOWLEDGE INTERRUPT INSTRUCTION
ROD! DAC BF20 CUMMUNICATION BUFFER 20
ocT 13 PLGE 0, PAC 13
BSz 6 DEVICE ID STORAGE
ROD2 DAC BF2l COMMUNICATION BUFFER 21
ocT 14 PLGE 0, PAC 14
BSZ 6 DEVICE ID STORAGE
%*
% XSPT - EXECUTIVE SPECIAL PARAMETER TABLE
XSPT 0CT 1 RE.OCATED RASE SECTOR OPTION USED
XPFP XAC XSSA PGYER FAILURE INT. RESPONSE ADDRESS
XEXA O0CT O EXTENDED ADDRESSING OPTION NOT USED
ocT 7771 LW CORE PROTECTION LIMIT
ocT 17777 HIGH CORE PROTECTION LIMIT
*
% XINT - INITIALISATION ROUTINE POINTER
XINT XAC SC NG USER INITIALIZATION
END

SECTION V
RTX-16 UTILITY PROGRAMS

UTILITY PROGRAMS

Overview

Four families of utility programs are included as part of OP-16:

1. Off-line core only (OFLCUP)
2. Off-line core mass store (OFLMUP)
3. On-line core only (ONLCUP)
4, On-line core mass store (ONLMUP)

OFLCUP provides for off-line debugging of core-resident programs. OFLMUP is de-
signed to load programs, data, and a copy of the Executive (if desired) onto the system mass
store at the tifne when a system is being built and to provide for off-line debugging. On-line
core mass-store utilities are designed to provide for programmer-computer communication,
on-line transfer of information from sending devices to receiving devices (for example, core,

mass store, ASR, paper tape, magnetic tape, etc.), and on-line debugging,

All utility programs are configurable for a variety of 1/O devices as well as for a variety
of funciions. In general, the user is expected to configure the utility programs to suit a par-
ficular hardware environment and to include only a desired set of functions. In designing the
utilities, configurability was achieved by emphasizing modular construction at the cost of a

slight increase in core usage.

The structure and components of off- and on-line utilitics of equivalent scope are identical.
The essential difference is that on-line utilities run under the control of the RTX-16 Executive, -
while off-line utilities run under the control of a small Execulive simulator. In both cases the
configured and loaded utility programs are treated by the Executives as any other programs.
Components comprising the the utility programs are included in the OP-16 Utility Program
Library and are listed in Doc. No. 70181898-311, Binder Table of Contents for OP-16

(BTC1OP16).

A detailed discussion of utility program operation, features, and building procedures is
included in Doc. No. 70130072519, OP-16 Utility Programs, The following paragraphs provide

only a brief summmary of utility program features for the reader's convenience.

5-1

Preconfigured Special-Purpose Utility Pro-rams

A set of preconfigured utility prograsias is provided for the user's convenience:

1.

Functions

One set of off-line core-only utilities (OFLUT-1) for an ASR and high-speed
paper-tape reader /punch envirsnment with debugging features.
provides the user with an immediate initial debugging tool.

This version

Two sets of basic off-line core mass-store utilities (OFLUT -2 and -3), each
supporting a different mass-store device, These basic core mass -store utilities
are built specifically to assist the user in creating other core mass-store utilities
with expanded capabilities as desired for the application.

By selecting the appropriate components from the Utility Program Library, the following

features may be incorporated by the user into the custom-tailored run-time utility package in

accordance with the building procedures described in Doc. No., 70130072519, QP -16 Utility

Programs.

1.

Media transfer and verify features (used in system building, loading, and dumping):

TR COSM - Transfers specified number of segments from core to mass store.

TR SMCO - Transfers specified number of segments from mass store to core.

VE SMCO - Verifies specified number of segments on mass store against core
and prints differences.

TR COPP - Transfers specified area of core to paper tape.

TR PRCO - Transfers information from paper tape to core.

VE PRCO - Verifies information from paper tape against core and prints
differences.

TR SMPP - Transfers specified number of segments from mass store to
paper tape.

TR PRSM - Transfers informetion from paper tape to mass store.

VE PRSM - Verifies information from paper tape against mass store and
prints differences.

TR COMT - Transfers specified area of core to magnetic tape.

TR MTCO - Transfers information from magnetic tape to core.

VE MTCO - Verifies information from magnetic tape against core and
prints differences.

TR SMMT - Transfers specified segments from mass store to magnetic
tape.

TR MTSM - Transfers information from magnetic tape to mass store.

VE MTSM - Verifies information from magnetic tape against mass store

and prints differemnces.

Debugging features:

RC - Replace core; enables ccntents of specific core locations to be printed
and optionally replaced with octal data.

PC - Print core; enables contents of specific core locations to be printed in
octal.

FC - Fill core; enables specific block of core to be filled with given octal
value.

5-2

SC - Search core; enables specific block of core to be searched for ygiven
value under a mask, enables matching conditions to be printed out,

3. Real-time commands (on-line utilities only):
RI> - Requests cxecution of program and optionally passes parameter to it.
CC - Connccts program to system clock for automatic periodic excoution.
DC - Disconnects program [rom system clock.
PT - Prints system time in hours and minutes.

RT - Replaces system time.

4, On-line core protection features:

P, - Prints core protection limits; utility functions are prevented {rom
modifying core outside these limits.

RI, - Replaces core protection limits.

Core Requirements

Approximate core requirements are shown in Table 5-1.

Table 5-1. Utility Program Core Requirements

Program Core required
(words decimal)
. a,b L
On-line core mass store 512
. L a e .
On-line core only 512~1152
Off -line core mass store 2304
Off -line core only 2560

Uiilize on-line drivers. Driver program core require -
ments are not included,

Core required by on-line core mass -store utilities is
independent of awmber of functions and is always 512
words,

DEVICE DRIVIERS

RTX-16 supports an expandable library of Feal-tiree driver programs. These drivers are
described in detail in separate manuals. For a list of drivers available to date, refer to Doc.

No. 70181898-311, Binder Table of Contents for OP-16 (BTC1OP16).

All drivers are interrupt driven, allowing simultaneous operation of drivers and user

prograrns .

The RTX-16 Executive makes no dis.inction between user programs and device drivers.
isach is a program The user is wise, however, to give device drivers high priority in the lixecu-
tive Program List Table (XPLT) so that 1/ operations may begin quickly after requests. Be-
cause drivers are programs, they need nci reside in core but may optionally reside in secondary
storage when they are not being used. The secondary storage driver, of course, must always

remain in core.

Any special configuration information required by a driver is included as part of the
Executive Device Configuration Table (XDCT), Most drivers must also include or be linked to

a communication buffer.

Because a driver is a program, it is called by the Request Program function. Drivers
invariably use the Communication option in order to receive a pointer to the data buffer in the
calling program. KEach program using this option must specify a queueing buffer and define
the length of this buffer in the Executive Configuration Module. In other words, requests for
drivers may be queued to whatever extent the user desires. Likewise, each program using
Communication must specify a queueing subroutine. Although the standard FIFO (first-in first-
out) subroutine is usually the most convenient, any other scheme may be used if the user writes

the subroutine and links it into the system.

SECTION VI
WRITING A PROGRAM

Programs to be run under RTX-16 should be written in DAP-16 or Fortran. The following
discussion is applicable to both types of program. However, Fortran programs must conform

to the restrictions outlined in the Section VIIIL.

PROGRAM HEADER

Each program run under the RTX-16 Executive must have a header with the structure

illustrated in Figure 6-1. The first word {-1) indicates the top of the header. The last word
before the start location is used to store the communication parameter for programs using
communication, It is unused (but must be present) for programs not using communication. The
intervening one to ten wérds are used to queue labels to be scheduled., Figure t,-2 shows the

gqueueing of labels.

Most programs should leave room for four labels. If the user knows that four labels are
too many or too few he may change the size of the block of zeros. However, the minimum header

must include the -1 and two blank locations immediately before the start address.

PROGRAM NAME

Fach program is identified by a unique two-character name. This name (for example,
SM for the System Mass-Store Driver) is used for reference by the Executive and is defined by

the user in the Configuration Module.

INTERRUPT RESPONSE CODE

Interrupt responsc code has been defined earlier in Section 1I. Any program which must
respond to an interrupt (such as a device driver) must have a section of interrupt response code.

The starting address of this section is transmitted to the Executive in the Connect Interrupt call.

The following restrictions apply to interrupt response code:

1. Must not execute for longer than 50 cycles

2. Cannot make any Executive calls

3, Must not contain any ENB instructions

4, Must acknowledge the interrupt with an appropriate INA, OTA, or OCP

instruction.

CODE CORE STRUCTURE

DEC -1 1 SIGNIFIES TOP OF
PROGRAM HEADER
BSZ 5 . 0
A A 1—-10 STORAGE LOCATIONS FOR
T r LABELS TO BE SCHEDULED
0]
0 } COMMUNICATION WORD
STRT % FIRST INSTRUCTION
OF PROGRAM

Start location (STRT in above) is location entered in XPLT.

Figure 6-1. Structure of Program Header

ONE LABEL QUEUED FOUR LABELS QUEUED

.1 1
0 FOURTH LABELTO La
BE SCHEDULED
o | THIRD LABEL TO - (3
‘ BE SCHEDULED
o SECOND LABELTO L2
BE SCHEDULED
LABEL TO BE SCHEDULED = L FIRST LABEL TO - u
BE SCHEDULED
COMMUNICATIGN WORD = COMMUNICATION WORD *
PROGRAM START ADDRESS®™ PROGRAM START
ADDRESS

Labels are ¢ueued in first-in first-out order, with next label to be
scheduled aiways in word preceding communication word.

Figure 6-2. Queueing Labels in Program Header

Interrupt response code is in the subroutine format; that is, its first word is used f{or

storing a return pointer (DAC *%), and it returns by jumping through this pointer.

Interrupt response code must exit with a label in the A register if a section of non-
interrupt code is to be executed in response to the interrupt. If the A register contains zero,

no label will be scheduled.

A typical section of interrupt response code is shown later (Figure 6-5), starting at SDIN,

WRITING PROGRAM WITH INTERRUPT RESPONSE CODE

Most programs that respond to interrupts are driver programs. They are handied by
RTX-16 exactly the same as other user programs are. Figure 6-3 shows a skeleton flow chart

for any program responding to interrupts. The hexagonal boxes enclose Executive function calls.

Passing Instructions to Drivers

The communication parameter is usually a pointer to a buffer. The first locations of this
buffer contain the name of the calling program, normal and error return pointers, the desired
function {for multipurpose drivers), and other pertinent information. Each calling program
must provide exactly the information that the driver requires. The data buffer to be used be-

tween the calling program and the driver usually follows these information words.

Bookkeeping in Drivers

Most driver programs should provide a flag between the interrupt and noninterrupt code.
This flag is set by the interrupt code and reset by the noninterrupt code. An interrupt response
that finds the flag still set would know that noninterrupt code had not kept up with the interrupts.
A special return could then be scheduled to signal the condition. Another flag or counter should

be used to indicate when the job is done. This flag would cause control to transfer to the Finish

entry in Figure 6-3.

Use of Error Print Program

Drivers should use the Error Print program to notify the operator of any errors discovered.
Usually these will be device failures or overloads. Each program using the Error Print pro-

gram should establish unique error codes.

SAMPLE PROGRAM WITHOUT INTERRUPT RESPONSE CODE

Figure 6-4 shows a sample user program. This program, NM, calls another, SD, to
receive six ASCII characters (packed one per word). SD is described below., NM then takes
these six characters and converts them to a decimal number. Blanks are ignored. The resul-
tant number is then passed as a parameter to CC. Two negative numbers are used as error
indicators to CC. Minus 1 means that SD gave NM a character other than blank or 0 through 9.
Minus 2 means that SD gave an error return to NM or could not be executed.

6-3

‘ START ,

RESTLAT

FINIGH
CONNECT HAND . NG
INTERRUPT LALY
INVERFUPT
SET UP FOR SET UP =0R
FIRST NEX'
INTERRUPT INTERRLPT
WAIT
(enter)
HANDLE
INTERRUPT
(MINIMUM)
INTERRUPT
RESPONSE
CODE
RESTART OR !
FINISH LABEL
TO A REGISTER

EXIT

Some indicators must be kep? within program to determine when

FINISH

i

FINISH
HANDLING
INTERRUPTS

DISCONNECT
INTERRUPT

TERMINATE

Finish entry must be scheduied rather than Restart entry.

7 NONINTERRUPT CODE

Figure 6-3.

Simplified Fiow Diagram for Driver Programs

This program (M) calls pregram SD for input, converts decimal
number inASCi} to binary number, and passes that number to CC.

Provisions for errors are included.

SAMPLE RTX PRCGRAM. SEE TEXT.
* CALLS S»n TO GET ASR INPUT. CONVERTS [FC 3INARY NUM3ER »
* PASSES THE 3INARY NUM3ER TC CC AND TERMINATES.
&
DEC -1 rCP OF HEADER
3SZ) 4 LAZELS AND 1 UNUSED CCMMUNICATICN wWORD
NM LDA =-6 BLANK THE SIX BUFFER WCRDS FIRST
STA TEMP STCRE COUNTER IN TEMP
LDA FRST PCINTER TO TCOpP OF SBUFFER
STA ADRS)
LA =240 BLANK
BLNK STA%* ADRS STORE IN 3UFFER
) IRS ADRS UPDATE PCINTER
IRS TEMP UPDATE INDEX
JMP BLNK LCCP
*
* REQUEST PRCGRAM SD TC GET NUMBER
JST=x XLNK
DEC i FUNCTICN 1s REJUEST PROGRAM
BCI 15SD PRCGRAM SO REJUESTED
DAC ERR RETURN ADDRESS IF EXEC CAN°T EXECUTE SD
bAC 3UF PARAMETER TCO BE CGOMMUNICATED TO SD
i
* EXECUTE WALT FUNCTION
JSTx XLNK
DEC 8 FUNCTION 38, WAIT
*
* PROGRAM SD SCHEDULES NM TO START HERE IF NO ERRCR
NORM LOX ==6 CCUNTER OF WCRDS PRCCESSED
£Lna LAST POINTER TO END OF BUFFER
sta ADRS STCRE IN TEMPCORARY LOCATION
CrA
STA vaLu INITIALIZE VALU TO ZERO
STA POWR INDICATES TEN TO THE ZERO POWER
LOOP LDA%® ADRS PICK UP WCRD FRCM BUFFER
SUB =260 SUBTRACT ASCII ZERC
SPL) TEST SICN OF RESULT
JMp NEG -NEGATIVE MAY MEAN AN ERROR
CAS =9 -PCSITIVE», CHECK FCR 0-9
JMP UM >9, JUMP TC HANDLE
NOP =9, CKAY
STA TEMP «9, SAVE VALUE FOR MULTIPLICATION
LDA PCOWR WHAT POWER CF TEN [S TO BE USED?
MLP STA PWR1 STCRE POWER CF TEN YET TO 8E USED
SNZ DONE YET?)
JMP ADD -YESs ADD IT TO VALU
LDA TEMP VALUE TC BE MULTIPLIED
L GL 2 MULTIPLY BY FCUR
ADD TEMP (4 X TEMP) + TEMP = 5 X TEMP
LGL i i0 X TEMP
STA TEMP NEW VALUE
Figure 6-4. Example of User Program (Part 1 of 2)

LA PWR1Y CLi PCWER OF TEN

SU3 =1 DECIEMENT TC NEW PCOWER bF TEN
JMP ML P MUL TIPLY AGALN OR EXIT
AN LDA TEMP CET VALUE
ADY VAL U AL TC vapLu
STA vaLUu SAVE NEW VALUE CF VALU
IRS POWR PCWER CF TEN
NGLP LDA ADRS BUFFER PCINTER
sSuUs3 ==1 PCINT TC PREVICUS WCRD
STA RS STCRE NEW VALUE COF PCINTER
RS e] UPLATE COUNTER
JmP LOCP WOR:X ON NEXT WORD
#
E NCW REJUEST PRCGRAM CC USINTG VALU AS PARAMETER
RPCC JST=#x XLNK
DEC i - FUNCTION 1, REQUEST PROGRAM
3CI 1->CC REZUESTED PRCOCRAM IS CC
nac TERM NCRMAL RETURN EVEN IF AN ERROR
VALU 387 1 VALU IS THE PARAMETER PASSED TO CC
*
* NCW TERMINATE
TERM JST=* XLNK
DEC 7 FUNCTION 75 TERMINATE
k1
* HERE TO HANDLE CHARACTERS < ASCII ZERO
NEG ERA =*~20 CHECK FOR BLANK
SNZ
P N2LP IGNORE BLANKS
Vit LBA ==1 AN ZRROR IF NOT BLANK OR 0-9
STA VAL U STORE IN VALU
JMP]RPCC REJUEST CC WITH vaLU = -1
* .
* IF S DETECTS AN ERROR IT_SCHEDULES NM TO START HERE
ERR LDA =2 SIG+YAL TO CC THAT SD MADE AN ERROR
STA VAL U STCRE IN VALU
JMP RPCC REQUEST CC WITH vaLuy = -2
B
B3 HERE IS THE BUFFER THAT SD QPERATES UPON
BUF BCI i oM FIRST WORD IS PROGRAM NAME
DAC NORM SECOND WCRD IS NORMAL»RETURN LABEL
DAC ERR ' THIRD WORD IS ERROR RETURN LABEL
35S & NEXT SIX WORDS ARE FOR DATA
*#
LAST DAC = POINTER TOQO LAST WORD IN BUFFER
FRST DAC BUF+3 PCIMNTER TGO FIRST WORD IN BUFFER
ADRS DAC * ¥ STORAGE FOR BUFFER PCINTER
TEMP BSZ i STORAGE FOR VALUE OURING MULTIPLICATION
POWR BSZ i STORAGE FCR POWER OF TEN
PWRl BSZ i TEMFPORARY STORAGE FOR POWER OF TEN
XLNK QOCT 1010601 INDIRECT PCINTER TC FUNCTION ENTRANCE
END

Figure 6-4. Example of User Program (Part 2 of 2)

6-6

An actual program to run under RTX-16 would probably include more error checking and
more toleration of different inputs by SD. This example shows proper use of the Lxecubtive

functions.

SAMPLE PROGRAM WITH INTERRUPT RESPONSE CODE

Figure 6-5 shows program SD, the driver program used by the previous example. This
program connects the ASR and waits for input. It terminates after either the input of six
characters or the input of a carriage return. The characters are passed to the calling program

(for example, NM) without being packed.

Two kinds of errors are detected by SD, Both cause a return to the calling program's
error label. The more serious error is caused by a busy ASR after the interrupt has been
connected, The Error Print routine is called in this case and given the error number '333.
The less serious error is caused by inability to connect the interrupt. The Error Print routine

is called by the Executive in this case.

This example illustrates the proper use of function calls, calls to the Error Print pro-
gram, and interrupt and noninterrupt code. All the necessary functions of a driver are

performed.

This is program SD, called by NM. U 3 to six characters are read
from ASR before program returns.

SAMPLE RTX DRIVER. SEE TEXT.

&

% USER BUFFER: FIRST WORD = SJAME GF CALLING PRCGRAM
. SECOND WORD =~ HCRMAL RETURN LABEL
% THIRD WCRD - 5RRCR RETURN LABEL
& FCURTH = NINTH WORDS = DBATA BUFFER
A
DEC -1 TOP OF HEADER
BSZ S 4 LASELS AND | COMMUNLICATION WORD
SD LDA® SD=} PICK UP FIRST WORD IN BUFFER (PRCGRAM NAME)
STa NAME - STOR: IN SCHEDULE LAS3EL CALL
IRS SD=1 INCXEMENT BUFFER POINTER
LDA¥* SD-i PICK UP SECCND WORD IN BUFFER (NORMAL
RETURXN ADDRESS TO CALLING PROGRAM)
STA ADDR STORZ IN SCHEDULE LABEL CALL
IRS SD-1 INCREMENT BUFFER POINTER
LDA® SD-1 PICK UP THIRD WORD IN BUFFER (ERROR
* RETURN ADDRESS TO CALLING PROGRAM)
STA ERRL STGRE IN TEMPGRARY STORAGE
IRS SD-1 INCREMENT BUFFER POINTER TD POINT
* TO FIRST DATA LCCATION
LDA ==& MAXI#UM NUMBER OF GCHARACTERS ACCEPTED
STA CCNT STORE IN CHARACTER CCUNTER
"
ﬁ CCNNECT INTERRUPT CALL
JST» XLNK .
DEC 5 FUNC7ION Ss CCONNECT INTERRUPT
DEC 4 INTERRUPT REFERENCE NUMBER FOR ASR
DAC ERRA PCINTER TC ERRCR RETURN FCR THIS CALL
DAC SDIN PCINTYER TO START OF INTERRUPT
* RESPONSE CCOE '
SKS "0104 IS ASR BUSY?
JYP ERR3 AN' ERRCR IF IT IS
ocp °0034 ENASLE ASR FOR INPUT
s
* WAIT FUNCTION CALL
WALT JST* XLNK
DEC 8
*
* INTERRUPT RESPGNSE CODE STARTS HERE
SDIN DAC k% EXECUTIVE STARTS INTERRUPT RESPONSE CODE
* WITH A JST. SAVE RETURN ADDRESS HERE.
INA 1004 CLEAR 4 REGISTER AND INPUT CHARACTER
NCP ASR WILL BE READY SO INA WILL SKIP
sra TEMP SAVE GHARACTER FCR NON-INTERRUPT CGDE
LDA HDAC PCOINTER TC NON-INTERRUPT PART OF PROGRAM
JMP® SDIN RETURN TO EXECUTIVE. TOTAL TIME 7 CYCLES.
Me
% HERE THE NON~INTERRUPT PCRTICN STARTS
HNDL LDA TEMP GET CHARACTER
ERA CR IS IT A CARRIAGE RETURN?
SNZ ZERC MEANS CARRIAGE RETURN

Figure 6-5. Example c¢i Driver Program (Part 1 of 2)

6-8

Jue TERM JUMP TO TERMINATING RCUTINE

L DA TEMP NOT A CARRIAGE RETURN3 GET CHARACTER AGAIN
STA® SD-1 PUT IN CALLING PROGRAM 8UFFER
IRS SD=-1 INCREMENT BUFFER POINTER
iRS CCNT INCREMENT CHARACTER COUNT
JMP WalT NOT DONE, EXECUTE WAIT FUNCTION
JMP TERM DONEs JUMP TC TERMINATING ROUTINE
&
ERRB LDA =°333 PROCRAM*S UNIQUE ERRCGR CODE
LDX NAME NAME CF CALLING PROGRAM
INH MUST INHISIT INTERRUFTS FOR ERROR PRINT
JST% XEPR CALL ERROR PRINT ROUTINE
ENG REENABLE INTERRUPTS
* FalLL THRGUGH TG ERROR RETURN TO CALLING PROGRAM
*
ERRA LDBA ERRL USER®*S ERROR RETURN PCINT
STa ADDR STORE IN SCHEDULE LABEL CALL
FalLl THRCOUGH TC TERMIN&TING ROUTINE
*
& TERMINATING ROUTINEs FIRST DISCONNECT INTERRUPT
TERM JSTx XLNK
DEC 6 FUNGCTION 6» DISCONNECT INTERRUPT
DEC 4 INTERRUPT REFERENCE NUMBER FOR ASR
*
LDA ADDR USERS®S RETURN ADDRESS
SNZ ZERC MEANS DO NCT SCHEDULE LABEL
JMP LAST iF ZERC GC DIRECTLY.TC TERMINATE CALL
* SCHEDULE LABEL CALL FCFH RETURN TG USER
JST* XLNK
DEC 2 FUNCTION 2 SCHEDULE LABEL
MAME ks * R PRCGRAM NAME GCES HERE
DAC LasTt TAKE NORMAL RETURN EVEN IF ERRCR
ADDR %%k ok ADDRESS I'C BE SCHEDULED GOES HERE
* (NORMAL RETURN UNLESS AN ERRCOR ABOVE)
%
® TERMINATE FUNCTICN CALL
LAasST JsT# XLNK
DEC 7 FUNCTICN 7, TERMINATE
#
ERRL BSZ H STCRAGE FOR ERRCR RETURN ADDRESS
CCNTY BSZ 1 CHARACTER COUNTER
TEMP BSZ i STCRAGE FCR CHARACTER BETWEEN
% INTERRUPT AND NON-INTERRUPT CODE
CR cCT 215 CARRIAGE RETURN CHARACTER
HDAC DAC HNDL POINTER TC BEGINNING CF INTERRUPT CODE
XLNK OCT 101001 INDIRECT PCINTER TCO FUNCTICN ENTRANCE
XEPR CCT 101016 INDIRECT PCINTER TO ERRCR PRINT ENTRANCE
END

Figure 6-5. Exzmple of Driver Program (Part 2 of 2)

SECTION VII
SYSTEM BUILDING

LAYOUT

Before an Op-16 system is built, its layout must be established. As mentioned earlier,
the Basic Executive and its support modules have a fixed location. However, the position of the
end of this section depends on the length of the Configuration Module. Use the size estimation
formula discussed in Section IV, Configuration Module, in order to know where to end this

module.

Except for the dedicated locations below '64, sector zero is entirely free {or cross-sector
links or data tables. Systems with the Relocatable Base Sector option may use another sector
for the cross-sector links of programs high in core, (See Special Capabilities of RTX-16,

Section VIII.)

Each program must be assigned a fixed location in core. For systems with mass storage,
extreme care must be taken to see that programs which occupy the same core area will never
need to be in core at the same time. Because the mass storage drivers operate upon 128-word
segments, programs that reside on mass storage must begin on segment boundaries (using

ORG}.

Figure 7-1 shows the core-storage layout of a small Op-10 system with 8K of memory

and no secondary storage. Figure 7-2 shows a larger system with 12K of memory and a mass

storage device.

The user must also layout the segments on the mass storage. There are no special

requirements. He should reserve an area capable of holding the entire system for casy

initialization.

Once the core- and mass-storage layout is completed, the Configuration Module must be
assembled. The rules given in Section IV and the Sample Configuration Module (Table 4-3)

will help with this. When a proper module that assembles with no errors is created, the sys-

tem may be built,

SECTOR SECTOR

] INDIRECT ADDRESS LINKS 0 INDIRECT ADDRESS LINKS

- BASIC EXECUTIVE -~ BASIC EXECUTIVE

CONFIGURATION MODULE, FIFO, CONFIGURATION MODULE, FIFO,
ERROR PRINT PROGRAM ERROR PRINT PROGRAM, SYSLOAD
ASR DRIVER MASS-STORE DRIVER
7 ASR DRIVER
UTILITY PGM)
— (SIZE DEPENDS ON FEATURES INCLUDED) ~ UTILITY PROGRAM*

USER PROGRAM 1
CORE-RESIDENT

USER PROGRAM 2 USER PROGRAMS

MASS-STORAGE-RESIDENT
] USER PROGRAMS

25

26

27

*CORE RESIDENT PART

Figure 7-1. 8K Core-Only System Figure 7-2. 12K Core/Mass-Store System

7-2

The user must be familiar with two or three off-line support programs. Al

LDR=APM are described in the 316/516 Operators' Guide, Doc. No. 70130072165, The O .14,

utility program is discussed in Scction V of this manual.

BUILDING CORE-ONLY SYSTEM

When an RTX-16 system is first constructed, object tapes produced by the assembler are
used, and LDR-APM is used to produce executable code in core. The PAL-AP utility program
allows the user to punch the contents of core onto paper tape in a self-loading form. The purich-

ing of self-loading tapes enables the user to have a permanent copy of his system.

Figure 7-3 shows the loading process schematically. Figure 7-4 shows two core maps

for an actual RTX-16 system without the Fortran capability. Figure 7-5 shows an RTX-16

system with the Fortran capability.

Building RTX -16 Executive

The RTX-16 Executive is supplied by Honeywell as three object tapes (Basic Rkxecutive,
FIFO, and Error Print program). The Cenfiguration Module must be written by the user and
assembled, using the DAP-16 Assembler to provide an object tape, Utility programs are to be
configured and loaded in accordance with the procedures described in Doc. No. 70130072519,

OP-~16 Utility Programs. The following steps are used to load and punch the Basic Executive

and the Configuration Module.

1. Load the loading program LDR-APM into the four highest sectors of memory
(in the example in Figure 7-1, sectors 14 through 17 octal). This program
is provided as a self-loading tape.

&%)

Lioad the utility program that punches self-loading tapes (PAL-AP) into
memory, starting at location 7000 octal.

3. Use LDR-APM to load the object tapes of the RTX -16 Basic Executive,
Configuration Module, queueing routine FIFO, and Error Print program.
Load the system-level Fortran Run-Time routines if required.

4. Use PAL-AP to punch a self-loading tape of locations 1000 through the
end of the section just loaded.

Building Programs for RTX-16

Programs to be run under RTX-16 normally will be in the form of object tapes when the
system is being built. In order to load all of memory with RTX-16 and its programs, the
system musé be built in stages which are punched out as self-loading tapes and finally all

loaded into place.

BUILDING PROGRAMS IN SECTORS 4 THROUGI 7
The user may build programs in the area between the end of the Configuration Module

(probably in sector 3 or 4) and location 7537. Locations 7540 through 7777 may not be used

e

T

1000

7000

o N

BUILDING
EXECUTIVE ,

BASIC RTX-16
EXECUTIVE

CONFIGURATION
MODULE , ER, FIFO,
ON- LINE UTILITIES

FORTRAN READ/
WRITE COMMON
COMPONENTS @

REENTRANT
FLOATING POINT
SR'SO

Y/

=

I //// /

/

7540
10000

a YO BE LOADED OPTIONALLY WHEN NEEDED.

BUILDING PROGRAMS iN

SECTORS &4-7

PROGRAM 1

PROGRAM 2

DO NOT USE

N
N

/

\\

/ Lé n/-//ié/é
7

///// 7

2000

4000

5000

6000

7000 '”V

BUILDING PROGRAMS IN
SECTOR 10 AND ABOVE

//

PROGRAM 3

PROGRAM 12

PROGRAM 7

Figure 7-3.

7-4

Building Core-Only Op-16 System

PART 1 PART 2

. 0W 01000 FIFO 03134
#*5TART 01000 EP 05323
*HIGH 05066 ED 03432
*NAMES 33256 LO 03603
HO0MN 77777 MDRQ 03714
*BASE 03134 APLT 04000
*BASE 02776 ER 04022
*BASE 01772 MsD 04034
EXEC 010060 KPET 04226
XPIC 0l011} LOI 04232
XPEP gciozg ' KBi 04254
SYSF 0102} %x XKIDT 04256
XSSA 01023 CLK2 04265
OPTRAC 01037%x% CLK3 04266
XHPT 01041} %% Xibz D441l
INP! 01044 XIDl 04423
SC G1103 XCT 04430
IH 013543 XCUT 04674
IH20 01372 XIVT 04731
IHP ! 01507 XLPT 04770
IH40 01513 XFET 05013
IHSC 01521 XDCT 05024
CLH 01525 XSPT 05057
CcL - 01527 KPFP 05060
XLNK 02000 XEXA 05061
FEIO 02057 XINT 05064
FE20 D2104

FERR 02123 MR

XsP1 02131

LB 02134

RP 02167

RPRO 02174

SL 02264

SLBL 02275

cc 02342

DC 02444

CI 02516

DI 02626

TE 02641

WA 03000

Al 03063

Figure 7-4. Memory Map of RTX-16 Without Fortran Capability

PART 1 PART 2

L0 01060 FIFO 03134
G TART GL1000 EP 03323
#HIGH 11706 ED 03432
H*NAMES 33143 RV 03603
#H0MN 77777 MDRQ 03714
WBASE 03134 ' *PLT 04000
HBASE 02776 ER - 04022
BASE 08675 MsSD 04034
HWASE 07727 XPET 04226
HIASE 10725 Lol 04232
BASE 11254 KB1 04254
BASE 01772 XIiDT 04256
EXEC 01000 CLK2 04265
KPIC 08011 CLK3 04266
XPEP 01020 XIb2 04411
XSSA 050623 XID| 04423
OP TRAC 01037 XPCT 04430
XHPT 0104 =% XCUuT 04674
NP1 Cl1044 XIVT 04731
SC 01103 XLPT 04770
IH 01343 XFET 05013
IH20 0isd7z XDCT 05024
IHF 01507 XSPT 05057
IH40 01513 XPFP 05060
IHSC 01521 XEXA 05061
CLH 01525 XINT 05064
CL 01527 SYSF 05066
XLNK 02000 CONV 05100
FEL10 02057 M$2d 05140
FE20 02104 D$2J 05367
FERR 02123 F$ER 05676
#SP 1 02131 . N$22 05716
LB 02134 OPED 06000
RP 02167 : FDLS 11000
RPRO 02174 ' F$AT 11260
SL 02264 S%2J 11346
SLBL 02275 AS2J 11364
cC 02342 JBASE 11670
ne 02444 JBAS 11670
CI p2516

DI 02626 MR

TE 02641

YA 03000

Al 03063

Figure 7-5. Memory Map of RTX-16 With Fortran Capability

7-6

by programs (although they may be used later for data or as buffers), because they are nsod
by PAL-AP. The following steps are used to load and punch programs in this areca.

1. l.oad the loading program LDR-APM into the four highest sectors of
memory {in the example in Figure 7-1, sectors 14 through 17 octal).
This program is provided as a self-loading tape.

2. Load the utility program that punches self-loading tapes (PAL-AP)
into memory, starting at the beginning of any sector, except 4 through 7
or the five uppermost,

3. Load all user programs and subroutines that go in this area, using
LDR-APM.,

4, Use PAL-AP to punch a self-loading tape of this entire portion of
memory. If desired, PAL-AP can also te used to punch out individual
programs.

BUILDING PROGRAMS IN SECTORS 10 AND ABOVE

To build programs in these sectors, LDR-APM and PAL-AP must be in sectors 1 through
7. After the programs have been built in the upper sectors, the self-loading tapes of the lower
sectors may be loaded, and the entire system will be in core. The following steps are used to

load and punch programs in this part of core.

1. Load the loading program LDR-APM into memory, starting at location
2000 octal.

2. Load PAL-AP into memory, starting at location 7000 octal,

3. Load all programs and subroutines that go in Sector 10 and above, using

LDR-APM.

4. Use PAIL-AP to punch a self-loading tape of this entire portion of memory.
If desired, PAL-AP can also be used to punch out individual programs.

BUILDING CORE MASS-STORAGE SYSTEM

The tools necessary to build a core mass-store system are LDR-APM, PAL-AP, and a

suitable mass-store utility program (MSU, Figure 7-6).

The purpose of the loader, LDR-APM, is described in Doc, No. 70130072165, 316/516
Operators' Guide. The purpose of MSU is to transfer the programs loaded into core by LDR-
APM onto the mass-store device as specified by the programmer via the ASR keyboard. The
preconfigured basic off-line utility programs (OFLUT -2 and -3, each supporting a different
mass-store device) may readily be used for this purpose; however, these programs are core

resident and occupy a relatively large amount of core.

In order to reduce core requirements and include additional features (debugging, magnetic
tape support, etc.), it is recommended that the user build, using the components provided in
the utility program library, his own off-line core-mass-store utilities in which several com-

ponents are made mass-store resident.

-7

o
i
r
2
|
£

1000

13000

BUILDING THE
EXECUTIVE

RTX-16
BASIC
EXECUTIVE

CONFIGURATION
MCDULE, EP,
FIFO,SYSLOAD

FORTRAN READ/
WRITE COMMON
COMPONENTS @

REENTRANT
FLOATING
POINT @

)

MASS-STORE //
UTILITY PROGRAM //

MSU OR OFLUT "

)

I
i

;?;//? }/V /;/

6000 j////////

13000

“UILDING PROGRAMS
‘N SECTORS 6-12

. ROGRAM 1

| PROGRAM 2

PROGRAM 4

PROGRAM 3

FATILITY PROGRAM
U#MSU OR OFLUT

i

2 TO BE LOADED OPTIONALLY WHEN NEEDED

BUILDING PROGRAMS
IN SECTORS 13 AND
ABOVE

1000 —

2000 LD/‘Q/Z/ /
7 //
7

UTILITY PROGRAM 7
/MSU OR OFLUT 7/

/

PROGRAM 6

PROGRAM 10

PROGRAM 5

PROGRAM 20

Figure 7-6.

Building Core Mass-Store System

Assuming that LLDR-APM and OFLUT or a user-built expanded OFLUT are available, the

following building procedure is recommended.

Building RTX-16 Ixecutive

The following steps are used to load and store the Basic ixecutive, Configuration module,
Error Print program, FIFO, and mandatory core-resident mass-store driver.

1. Load LDR-APM into four highest core sectors (14 through 17 octal in
© Figure 7-1),

2. Using LDR-APM, load PAL-AP (which punches self-loading tape) at
convenient location, for example, 7000 octal.

3. 1f basic mass-store utility OFLUT 1is to be used for storing programs on
mass store, use LDR-APM to load OFLUT into any memory sector, except
uppermost five (where LDR-APM resides) and lowermost seven (where
Executive will be loaded). Use PAL-AP to punch self-loading tape of
OFLUT for later convenience.

If it is necessary to build a partially mass-store resident off-line mass-
store utility program, which includes debugging features and support for
additional 1/0 devices (MSU), use LDR-APM to load OFLUT into any
memory sector, except uppermost ten. In this case, OFLUT will be
used to build MSU., Use PAL-AP to punch self-loading tape of OFLUT

for later convenience.

4. Build MSU, using components available from OP-16 Utility Program
Library, as described in the OP-16 Utility Program Manual, Doc. No.
70130072519.

Use LDR-APM to load object tapes of RTX-16 Basic Executive, Configura-
tion Module, Error Print Program, FIFO, and SYSLOAD. Load the system
level Fortran run-time routines if required. Use OFLUT or MSU to store
these core-resident components on mass store, if bootstrap procedures are
planned for application. If appropriate features are included in MSU, it
may also be used to punch paper tapes from core or from mass store which,
while not self loading, may be loaded using MSU.

w

Building Programs for RTX-16

Programs to be run under RTX-16 normally will be in the form of object tapes when the
éystem is being built. When using a mass-storage device as part of RTX-16, several programs
will often be designed to run in the same core location. Thus, the process of loading and saving
In order not to waste core space occupied by the Loader and Mass -

may be somewhat intricate.

Store Utility programs, the following two-stage procedure is recommended.

BUILDING PROGRAMS IN SECTORS 6 THROUGH 12
The user may build programs in the area between the end of the Mass-Store Driver

(probably in sector 5) and the end of sector 12.. The following steps are used to load and store

programs in this area.
L. Load the loading program LDR-APM into sectors 2 through 5 of memory.

2. Load OFLUT or MSU into any memory sector, except 0 through 12.

7-9

3. Use LDR-APM to load each program that is to be drum-resident, When
the program is loaded, store it on the mass store, using the utility pro-
gram. Prograing may also be punched on paper tape.

4. Use LDR-APM to load each program that is not to be drum-resident.
Store each program on the mass store, or use OFLUT or MSU to punch
a paper tape of each program. Careful layout of core and drum storage
will enable the user to store large blocks in one operation.

BUILDING PROGRAMS IN SECTORS 13 AND ABOVE
To build pregrams in this area, LDR-APM and MSU must be in sectors 0 through 12.

The following steps are used to load and punch programs in this part of core.

1. Load the loading program LDR-APM into sectors 2 through 5 of memory.
2. Build MSU into memory beginning at sector 6.
3 Use LDR-APM to load each program that is to be drum-resident. When

the program is loaded, store it on the mass store, using the utility program.
Programs may also be punched on paper tape.

4. Use LDR-APM to load each program that is not to be drum-resident. Store
each program on the mass store, or use OFLUT or MSU to punch a paper
tape of each program. Careful layout of core and drum storage will enable
the user to store large blocks in one operation.

SYSTEM INITIALIZATION

The entire core-resident part of the system must be loaded. Tapes punched by PAL-AP
are self-loading as long as the Key-In Loader in locations 'l through '17 has not been tampered
with, Tapes produced by the Mass-Store Utility program require that it be present in core to
be loaded. Then start execution of the Executive at location 1000 octal. RTX-16 will be fully
operational. If the computer is stopped for any reason, the Basic Executive and Configuration

Module should be reloaded before restarting at location 1000.

The RTX-16 Executive goes through the following initializing routine before starting normal

operation.

1. The power failure response address {rom XSPT is placed in location '60
(power failure interrupt location).

2. A predefined system stop address (location '1023) is placed in location '62
in order to stop the computer in case of a memory lockout violation (not
normally expected).

3. The Real-Time Clock is started. At the first clock cycle, the time will
be 00:00.
4. A pointer to the Executive Interrupt Handler is ‘placed in location '63

(standard interrupt location).

5. The interrrupt mask 1s established (the Real-Time Clock and ASR are the
only interrupts cnabled at initialization).

0. The ASR is put in the input mode,

SECTION VIII
SPECIAL CAPABILITIES OF RTX-16

RELOCATED BASE SECTOR

The Models 316 and 516 use a sectorized addressing scheme. This allows any instruction
word to have direct access to any word in the same sector and any word in the base sector
(sector zero). The base sector ordinarily is used by the loader to store indirect address links

generated by cross-sector references.

The Model 516 Memory Lockout option or the Model 316 Relocatable Base Sector option
allows any sector to be specified temporarily as the base sector. References to the base sector
then specify the relocated sector. This option is used to allow different programs to store their
indirect links in different sectors. The availability and use of this hardware is specified by the

first word of the XSPT table in the Configuration Module; nonzero means present, zero means

absent.

RTX-16 leaves all of sector zero in core permanently., This means that it may be filled
with links for programs, some of which may reside on mass storage. Programs for which
there is no room in sector zero must either keep all the indirect address words in their own
sector (using the SETB pseudo-operation) or use the relocatable base sector option. The follow-

ing subsections describe the use of the relocated base sector option under these conditions.

Programs Using Sector Zero

Any number of programs may use this sector. Locations '64 to '777 are available for

indirect addresses.

A1l programs that respond to interrupts (including all RTX-16-supplied drivers) must use

sector zero for indirect links.

Programs Using Relocated Base Sector

Programs that use the relocated base sector option must set the appropriate bits in their

XPLT entries; bit 15 of the option word to specify that the communication word is present, and

bits 2 through 7 of the communication word to specify the sector.

WRITING SPECIAL QUEUEING SUBROUT .NE

Before the user attermnpts to write h:s own queueing subroutine, he should examine and

% thoroughly understand the operation of F1-'O, the subroutine provided with RTX-16.

When the subroutine is called, it wi.l have the following information available to it.

1. Indirectly through XLNK — a wointer to the function call and a flag indicating
whether this is to be a fetch ¢r store operation. This flag is bit I - if it is
set (1), it means a store operztion is required; if it is reset (0) it means a
fetch operation is required, i

2. XPCP — the pointer to the beyinning of the Executive Program Communica-
tion Table.
3. XPLP - the pointer to the requesting program's entry in the Executive

Program List Table,

4, The contents of the A register — an index to the proper communication
buffer in XPCT.

5, The contents of the X register — a pointer to the first word of the program
header of the program being called.

Besides fetching and storing communication parameters, any queueing subroutine must
be able to make both normal and error rei;urﬁs and to reset the ''communications active'' bit in
the program's entry in XPLT when the builer is emptied. Much of this may be copied directly
from FIFO.

WRITING NEW SYSTEM FUNCTIONS

New system functions may be added to the system by the user. To enable users to incor-
porate new functions into their systems, the following information is provided. Certain function

numbers will, from time to time, be used for new standard functions.

Control Interfaces

ENTRY FROM USER PROGRAM TO FUNCTION HANDLER

The standard calling sequence is as follows.

(L) JST* XLNK Function Handler entry
(L+1) DEC < function no.>

(L+2) Parameter (Optional)

(L+3) DAC < addreis of error code> (Optional)

If the name or number of another program is specified, this must be specified in location
(L+2) of the calling sequence, using a BCI i, < program name> or a DEC < program number>

pseudo-operation respectively.

The address of the user's error code, if any, must be specified in location (L+3) of the

calling sequence.

8-2

;

/

i

Further parameters as required by particular system functions may be spocificd in
locations (I.+4), (L+5), etc. of the calling sequence, and one further parameter may be passed

in the A register.

ENTRY TO SYSTEM FUNCTION FROM FUNCTION HANDLER
The Function Handler enters the required function at its first instruction via an indirect

IMP instruction through the XFET pointer. The Scheduler is disabled and the J base set to Zeru,

RETURN FROM SYSTEM FUNCTION TO FUNCTION HANDLER
Following execution of the required system function the function must return to the
Function Handler at label FE10 via a JMP FEIQ instruction if no error occurred, and to label

FE20 instruction if an error occurred.

RETURN TO USER PROGRAM FROM FUNCTION HANDLER
Following execution of the system function the Function Handler enables the Scheduler,
restores the J base (if in use), and returns control to the appropriate location in the user's

calling sequence via an indirect JMP instruction.

RETURN TO SCHEDULER FROM FUNCTION HANDLER

The Function Handler, following execution of the required system function, checks the
flag FI50. This is set by system Functions 1 and 2, Request Program and Schedule Label,
when a program of higher priority than the one currently running is requested or has a label
scheduled. The flag FE50 is set also by the Interrupt Handler when it schedules a label in a

program of higher priority than the one interrupted.

If the flag is set during execution of a function, the Function Handler simulates an inter-
rupt, saving the necessary registers, and exits to the Scheduler so that the newly requested
high priority program may be started by the Scheduler.

Data Interface
ENTRY FROM USER PROGRAM TO FUNCTION HANDLER

When the user program enters the Function Handler, any input data required by the

Function Handler and the function is contained in the calling sequence. A parameter may also

be passed in the A register.

The function number must be in location (L.+ 1) of the calling sequence, and the error

return address, if any, must be in location (L4 3) of the calling sequence.

Any program specified must be specified by a BCI < 1, < program name> or a < program

or a < program ﬁt;m])er> pseudo-operation in location (L+2) of the calling sequence.

8-3

ien
xr

faad faosd o
wm w.. H B w.d remt
52 o o 9 5
@ 0 s oW &0
- o B s g
(OIS p w0 wow

< @ Sow @

w qra — c et @

J b - 2 2

- s o &

ot " ,_xﬂ(rww n e

k [S

i [4) i

5 o Gy =g

) o I

o -

o ko]

L ®

2o

-

o

7

SniSy

e

unction

N

¥
Ti0]

he

[
sl
I

'3
i

N

2. If a function is to schedule a label, it may use a subroutine within the
Executive called SLLBL. The calling sequence is:

EXT SLBL

LDX <pointer to XPET entry of program in which label is
to be scheduled>

LDA <label to be scheduled>

JST SLBIL

Normal return (interrupts inhibited)

Error return (interrupts enabled)

If the error return is made, the A register will be set as follows.
A =0 Program not active
A = -1 No room in header for label

The pointer to the relevant XPET entry will be set in XSP1 by the
Function Handler, if bit 1 of the relevant pointer in XFET is set.

3. Functions should not normally call other system functions. Exceptions
may be made in the case of Wait and Terminate under certain circum-
stances,

4. Functions should be loaded with the Executive Module and Configuration

Module to ensure that all the necessary links are completed successfully.

5, If a function is to request a program, use may be made of the global
subroutine RPRO. The calling sequence is:

A register must contain [(address of communication parameter) -3]
if the requested program uses the Communication option,

B register must contain the address of the XPET entry for the requested
programi:

EXT RPRO
JST RPRO
Error return
Normal return

On return, XSP! will contain a pointer to the XPET entry for the requested

program.

The error return will be made if the requested program's communication

buffer is full.

USER INITIALIZATION ROUTINIES

The RTX -16 Initialization routine, INP1 in the Executive, permits the running of user

initialization routines after the preliminary system initialization has been performed. This

enables systems running under RTX-16 to perform once-only systern initialization in a simple,
straight-forward manner, without having to resort to an 'Initialization Program', which would

mean an extra program in the system that would be run only once.

Description

User initialization routines are written as normal closed subroutines which may be

located anywhere in core (they could be located in a buffer area so that they would be

8-5

nay be any number of thase

> word

in the Co T

Scheduler, INF! does an
s Module, XINT (Ixecutive

the individual initialization

- ~word item XINT, which is a pointer to

sration Module must contain:

INITIALIZA

JST's to the individual initializa-
tion

ROL SUBROUTINE

i

[aS]

3

» inifl

imation control subroutine and

location 1 00008.

2-6

The Configuration Module entry XINT 1is:

EXECUTIVE INITIALIZATION TABLE
SUBR XINT

KINT oCT 10000

The initialization control subroutine and the initialization routines are:

INITIALIZATION CODE
ORG 10000

INITIALIZATION CONTROL
ICTL DAC ohcs LINK
JST INTI1 CALL ROUTINE 1
JST INT2 CALL ROUTINE 2
JST INT3 CALL ROUTINE 3
JMPx ICTL EXIT

INITIALIZATION SUBROUTINE I
INTH DAC s LINK

SJMPr INTH EXIT

INITIALIZATION SUPROUTINE 2

INTZ2 DAC G TLINK

JMPr INT2 EXIT

INITIALIZATION SUBROUTINE 3
INT3 DAC RS LANK

JMPa INTS3 FXIT

END OF INITIALIZATION SECTION

FIN

fxample 2
In this example, there is no user soitislization. The Conliguration Module endvy XINT s
x EXECUTIVE INITIALIZATION TABLE
SUBR KINT
KINT XAC 5C

This XINT

contains a pointer to the scheduler.

ADJUSTING CLOCK RESOLUTION

arable to aliow

Two parameters, regquired by the clock program, have been made confi

users to adjust the clock resolution. These parameters, labelled CILK?2 and CLK3, are located

in the Real-Time Clock's XIDT entry in the Configuration Module.

CLK2 is the number of clock interrupts per second. This is 20 for a standard system.

(11K3 is the negative of the number of hardware intevals between interrupts. This is -3 for the

standard

6, 7-ms Clock Resolution

C1K2 must be set to -1 to give an interrupt for every 16.7-ms clock period. CLKZ must

% then be sef fo 60, since 60 x 16.7 ms = | sec.

40-ms Cliock Resolution (Model 316 Only)

Firet the Real-Time Clock period should be adjusted to 20 ms. Then, CLK3 should be

adjusted to -2 (two 20-ms intervals between intérrupts). C1LK2 should be adjusted to 25, since

w725 w40 ms = 1 sec.

FORTRAN CAPAR

In Rewvision ¥ of the standard Series 16 Fortran Compller, new capabilities are added to

ing Fortran programs fo run under the OP-16 Operating System. The following

facilitate wri

subsections describe the configuration procedure and the programaming rules for this revision

of the compiler.

statement processors and the on-line assembly code processor have been

arate from the compiler itself. If these features are desired in

; coanfigured, the module OPMOD, Doc. No. 70181980000, must be

ese features are not desired {that is,

o

‘ollowing the compiler object. It

in oan 8K sysiem) the module OPrDUM, Doc. No., 70181981000, must be loaded immediately

following the compiler object. In such a system, anlD error will be reported if any of the

OP-16 statements are used on a program being compiled.
As in previous versions of the compiler, care must be taken when loading I/O driver
packages to avoid cross-sector references. The area from '100 to '624 is reserved in the com-

piler for these references.

Programming Rules

This subsection describes the usage of the following compiler features.

1. CP-16 statements

2. In-line assembly code

3. Cctal constants

4. Special data statement capabilities
5. Compiler library generation option
6. Additions to Fortran library

A Fortran system configured with OPMOD is a prerequisite for the utilization of features

. and 2. above. The others may be used in any Fortran system.

CP-1H STATEMENTS

Header
This statement is used to generate a program header and may have the following forms.
HEADER N
HEADER N, L
HEADER N(P)
HEADER N(P), L
whe re

N = 1~ or 2-character alphanumeric program name (used for documentation
purposes only).

I, = Number of words to generate for scheduled labels (if not present,
4 is assumed).

P = Communication parameter. Compiler assumes that parameter
passed is an address of a parameter (or a parameter list). This
name may be used in any way that a dummy variable is used.

The foliowing coding 1s gencrated by this statement.

oCT 177777
OCT 0
I, words for scheduled labels (or 4 if 1. is omitted).
oCT 0
oCcT 0 For communication parameter.

8-9

BOE f communication parameier is specified, F'$0I

ia called to convert address so that it is identical

to a dummy variable.,

W omust be the first statement in a program,

-

jev}

funciion call, type 5t prog TR .

-]
o
)
Us

The forms of

REQUEST i

where

program being requested.

anication parameter which must be either a constant or a

variable name,

£ = Statement number to which control is to be passed if the request

generated as a result of this statement.

. Ccde to evaluate program name.
. if program name is a constant (i.e., 2HA °, the
. constant will be generated in line.

STA pe

oCT 1
P QT 0 Program name.
P Zero if parameter is not specified.

P (pavameters if P is an array name) must be defined by DATA

Examples for the use of tne REQUEST statement, when calli

OF.16 driver manuals.

ment is used to penerate a schedule label executive call and has the following

whe re:

It may be either a statement number or an
such 2 case, it is the programmer's responsibility
: expression resulls in a valid address). In the simple case,

would contain only an integer variable that has been assigned
b, g 24

P = Program name which contains label being scheduled. May be
an integer constant or an expression.

E = Statement number to which control is to be transferred if error
is detected by system in the schedule request.

The following coding is generated by this statement.

LDA
Code to evaluate label. If label is a statement
number, a DAC to STMT number will be generated
in line.

STX X

LDA
Code to evaluate program name. If name is a
constant (i.e., 2HAB), it will be generated in line.

STA Y

JSTH XI.NK

oCcT 2

Y oCT Program name is stored or generated here.
DAC 15 Error linkage,

X DAC ILabel address is stored or generated here.

Connect Clock
This statement is usecd to generate a connect clock executive call and has the following
form.
CONNECT CLOCK g, K], L, &
where:

I = Name of program to be connected, which may be an integer
constant or an expressions.

J = Time of first execution, which may be a constant or an integer

expression.
K = Interval, which may be an integer constant or an expression.

L. = Base frequency, which may be an integer constant or an

expression.

[= Statement number to which control is to be transferred if
connect clock request fails.

The following coding is generated for this statement.

LDA Code to compute program name. 1f name is a
. constant, code will be generated in line.

STA W

LDA
. Code to compute initial execution time.
STA X

Disconnect Clock

STA
LDA

STA
JST*
OoCcT
W OCT
DAC
X OoCcT
oCcT
Z CCT

XLNK

Code to compute interval.

Code to compute base frequency.

Program name is stored or generated here,

Intial time is stored or generated here.
Interval is stored or generated here.

Base frequency is stored or generated here,

This statement is used to generate a disconnect clock executive request.

has the following form.

DISCONNECT CLOCK 7], E

where

1 = Program to be disconnected, which may be an integer constant
or an expression.

J = Base frequency to which program is connected, which may be

an integer constant or an expression.

Q!
i

request fails.

Statement number to which control is to be transferred if

The following coding is generated by this statement.

" LDA

STA
LDA

KXLNK

=

Code to evaluate program name. If name is
a constant, it will be generated in line.

Code to evaluate base frequency.
If frequency is an integer constant, it will be
generated in line.

Program name is stored or generated here.
Error linkage.

Base frequency is stored or generated here.

8-12

The statement

Connect Interrupt
This statement is used to generate a connect interrupt executive function request and has
the following form.
CONNECT INTERRUPT N[R], &
where:

N = 1- to 6-character name of interrupt processor, which must appear as
a subroutine entry point where it is defined.

R = Interrupt reference number. It may be an integer constant or an
expression,

£ = Statement number to which control is to be transferred if request
fails.

The following coding is generated for this statement.

LDA

.

Code to compute interrupt reference number.

f it is a constant, it will be generated in line.

STA X
JST» XLNK

ocT 5
X OCT Interrupt reference number is stored or generated here.
DAC E Error linkage.

XAC N Address of interrupt code.

Disconnect Interrupt
This statement is uscd to generate a disconnect interrupt executive request. Its format is:
DISCONNECT INTERRUPT N
where:

N = Reference number of interrupt to be disconnected. It may be an
integer constant or an expression.

The following coding is generated for this statement.
LDA

Code to evaluate interrupt reference number.
1f it is a constant, it is generated in line.

STA X
JST XLNK
oCcT t

X OCT Reference number is stored or generated here.

Terminate
This statement is used to generate a program termination executive request. It has the
following form.

TERMINATE

A path error will be reported if the next executable statement (if any) does not have a

statemoent numiber.

The following coding is generated for this statement.
J5TH XLNK
ocTt 7

Wait
This statement is used to generate a program wait executive request. It has the following
form,
WAIT

A path error will be reported if the next executable statement does not have a line number.

Print Error
This statement is used to generate a call to the system error print routine. The statement
has the following form,
PRINT ERROR N{1]
where:

N = Program in which error occurs., It may be an integer constant
(i.e., 2HXX) or a nonsubscript variable.

I = Error code. It may be an integer constant or an expression.

The following coding is generated for this statement:

LDA
Code to evaluate error.
DX N Program name.
INH
JST* EROR
ENB

Interrupt Block
This statement is used to declare a section of a program that is an interrupt response
code. The form for this statement is as follows.
INTERRUPT BLOCK N
where:
N = 1- to 6-character name of interrupt block.
This interrupt block name will be declared as a subroutine entry point, and it will therefore

be linked with an XAC's to the name (as in connect interrupt statements).

Mither this statement may be used as the first statement in a program, 1o which case the
entire program will be considered interrupt response code, or it may be embedded in a pro-
grarm, in which case the remainder of the program will be interrupt response code. The second
method is advantageous, however, in that the interrupt response code has access to all the

variables in the main portion of the program, thus avoiding passing parameters through common.

Interrupt Return
This statement is used to exit from interrupt response code and has the following format.
INTERRUPT RETURN K
where:

K = Integer variable which contains address of label to be scheduled.

This statement generates the following code.
LDA K TLabel to A,
IMP* ENTRY Entry's DAC at start of interrupt code.

IN-LINE ASSEMBLY CODE

A small assembler incorporated into module OPMOD can process all 1/0, shift, and
generic instructions (except sense switch testing instructions). An assembly language line is
signaled by the character A in column 1 of a source card. The op code must start in column 7
or later and must consist of a legal three-character instruction mnemonic followed by a blank.

NOTE; Embedded blanks within the op code are not allowed.

1f the instruction is a shift instruction, a shift count must follow as either a decimal or
an octal integer constant (octal constants are denoted by a lcading colon). An 1/0 group instruc-
tion must be followed by an integer constant which is the instruction’s function/device code. .

Creneric instructions do not require an address, and an error will be flagged if one is present.
The error "OU" is flagged if an undefined operation is detected.

OCTAL CONSTANTS
An octal constant may now be used anywhere any integer constant is permitted. An octal

constant is defined as a colon (:) followed by one to six octal digits (for example, :17710).

DATA STATEMENT ENHANCEMENTS
To facilitate compile time setup of OP-16 driver parameter lists, two extensions have

been made to the data statement syntax.

First, an integer variable may be initialized to the address of a statement by placing the’

statement number preceded by a dollar sign {$) in the constant list position corresponding to the

SRS

TR

.

i

LS

e R D

R e L

variable name. For example, to initialize I to the address of statement 200, the followinyg

statement might be used.

DATA 1/%$200/

The second extension is used to initialize one variable to the address of another variable.
When a variable appears in a constant list, the corresponding variable in the name list will be
set to the address of the former variable. For example,
DATA N/M/
would be equivalent to the assembly language statement:

N DAC M

The variable whose address is being used as a constant may not have an explicit subscript.
A subscripted variable name may be used, in which the address generated is the address of the
first array element. If a dummy variable is used, the address generated is indirect, pointing

to a word containing the actual address.

A repetition count is not allowed when using the extended features and will be set to one

if used.

OP-16 FORTRAN PACKAGE

Overview

The OP-16 Fortran Package consists of the following subsystems,

OP-16 Fortran Read/Write Statement Processor (RWSP)
Re-entrant Math Subroutines (RMS)
OP-16 Fortran Library Extensions (FLE)

OP-16 Fortran Read/Write Statement Processor (RWSP)

RWSP allows the use of Read/Write statements in programs executed in the real-time
multiprogramming environment of OP-16. It provides the links between the compiler-generated
1/0 calls and the drivers, and provides for editing of formatted calls., It is re-entrant and

capable of processing formatted or nonformatted Read/Write statements to any combination of

the supported devices in a simultaneous manner.

RWSP supports the following hardware.

ASR (Keyboard/Printer only) Type 316/516 - 53/55

Line Printer Types 5520 through 5527

Card Reader/Punch Type 5140

7-Track Magnetic Tape (up to four tape drives) Types 4020 and 4100

RO-35 Typewriters (output only, up to four Types 8892 through 8895
devices)

8-16

Relocated Dase Scector Lero

Up to 16K of core (Compiler-Loader limitations)

RWSP consists of two groups of components: common system-level subroutines and

driver Read/Write extensions,

The common system-level subroutines are:

Title Document No.
System Level Pointer Table (SLPT) 70182762000
QOP-16 1/0 Editor (OPED) 70182767000
Call Converter (CONV) 70182791000

The driver Read/Write extensions are:

Title ‘ Document No.
ASR Fortran Extension (ASE1) 70182790000
Line Printer Fortran Extension (LPII) 70182694000

Card Reader/Punch Fortran Extension:
Reader (CIF1) 70182697000
Punch (COF1) 70182698000
7 Track Magnetic Tape Fortran Extension (MTI1) 70182773000

RO-35 Printer Fortran Extension:

Printer 1 (ROCI) 70182699000
Printer 2 (RO02) 70182900000
Printer 3 (ROO03) 70182901000
Printer 4 (RO0O4) 70182902000

Loading procedures are described later in this subsection.

Re-entrant Math Subroutines (RMS)

RMS's include single-precision {loating point add, subtract, multiply, and divide sub-
routines and their support subroutines. All subroutines included in the RMS are listed in
Document No. 70182950-000 (RFMATIH) (refer to information under Binder Table of Contents,

Yellow Tab, in OP-16 Operating System Listing, Vol. 1).

RMS requires the High-Speed Arithinetic hardware option and the OP-16 Fortran Library

component OPFRT2H.

OP-16 Fortran Library Extensions (FL.E)
Fortran programs in gene ral call upon standard subroutines. These subroutines are

docurnented and distributed under the name of Fortran Library. The Fortran Library routines

are to be link-loaded with cach Fortran program.

86-17

S

R

SR AR A

;;:,-s
‘

In some cases the existing library routines had to be modified to satisfly OP-16 require-

ments; also, some additions were necessary. These have been incorporated in four QOP-16

Fortran Library tapoes:

Title Docuent No.
OPFRTH 70182903000
OPEFRT AL 70182904000
OPFRTZS 70182905000
OPFRT3 70182906000

OPFRTZ2H is required if the Re-entrant Math Subroutines are used; OPFRT2S is required

otherwise.

-1 Foriran Package Loading Procedures

The procedures for loading the OP-16 Fortran Package are as follows.

1f any of the Fortran programs configured in the system contain Read/
Write statements, link-load the following components with the

mxecutive.,
SLPT, System lievel Pointer Table
OPED, OP-16 Re-entrant 1/0 Editor (must be -loaded on a sector boundary)
CONV, Fortran I/O Call Converter.

Note that all three components are available punched on a single paper
tape, Doc. No. 70182918-000.

1f Read/Write statements are not used, omit step 1.

if the High-Speed Multiply /Divide hardware option is present in the
system, link-load the Re-entrant Floating Point Subroutines
{(Doc. No. 70182950-000) with the Executive.

Note that when the Relocated Base Sector hardware option is used, the
Re-entrant Floating Point Subroutines must be loaded so as not to

cencrate any cross-sector links.
if this hardwarc option is not present, omit step 2.

Complete loading all the other components that need to be linked with
the Ixecutive.

Lioad the first driver. If the driver is called by Read/Write statements,
link -load the appropriate driver Read/Write Extensions (and X1.OCS)
as described in the driver manuals. Repeat for each driver.

if a driver is not called by Read/Write statements, omit loading the
corresponding driver Read/Write Extension.

After loading the Fortran programs, load the Fortran Library tapes
together with the OP-16 Fortran Library tapes in the following order.

Title Document No. Condition
1. LTCFEI] 70181876000 —_
2. LTCFE2 70181877000 —
3. LTCF3H 70181878000 If hardware Arithmetic option is present.
or
LTCF3S 70181882000 If hardware Arithmetic option is not present.

8-18

Title Document No. Condition

4. OPFRTI 70182903000 -
5. LTCFr4 70181879000 -
6. OPFRTZH 70182904000 iIf Re-entrant Math Subroutines are used.
or '
OPFRT2S 70182905000 I1f Re-entrant Math Subroutines are not used.
7. LTCF5H 70181880000 1f hardware Arithmetic option is present.
or \
LTCFb5S 70181883000 If hardware Arithmetic option is not present.
8. OPFRT3 70182906000 -

9. LTCFo6 70181881000 -

OP-16 1/0 Editor Error Messages
The following run-time errors may be reported by the OP-16 1/0O Editor on the ASR.

701XX * DIGIT PRECEDES (

702XX NQ OPENING (

703XX NO DECIMAL PT.

704X X ILLEGAL CHARACTER

705X X INTEGER PRECEDES -

706X X INTEGER PRECEDES /

TOTXX TOO MANY NESTED ()

710XX NON INTEGER

711XX OUT OF RANGE FOR FIXED POINT
712X X OUT OF RANGE FOR INTEGER
713X X NOT T OR F

714XX FILLD WIDTH EXCEEDED

COMPILER LIBRARY GENERATION FACILITY
Three special capabilities were designed into the Fortran Compiler at its inception to
allow parts of the library to be written in Feortran. These features, as described below, are

enabled by setting bit 1 of the A register when starting the compiler.

Register Load

A statement of the form =expr is uscd to cvaluate the expressions and leave it in the
appropriate register, depending on the mode of the expression. Examples:

= (I+10)/2 loads A register with (I 4 10)/2

- 1.0 loads A and B registers with floating point value 1.0

= 1,000 loads double-precision accumulator (ACL, AC2, AC3) with double-

precision value i, 0

= (1.0, 1.0) loads complex accumulator (ACL, ..., AC4) with (1.0, 1.0)

1XX = Program name. E

Register Store

A statement of the torm var will store the contents of the repister appropriate to the
variable mode in the variable. For cxample, 1= will store the A register in 1. Care must be
taken if the variable is subscripted. In such a case, the operation will fail if the variable is an
integer or real and if one of the following conditions is met.

1. if the variable is a dummy and the subscript is not the constant one.

2. if the subscript contains a nonconstant element; for example, I(J)= will fail.

Register Test
An arithmetic IF statement may be used to test the sign of the A register as follows.
IF() 81, sz, S3

where S1, S2, and S3 are statement numbers.
The register is not modified by the test.

FORTRAN LIBRARY ADDITIONS

The following three routines have been added to the standard Fortran library to facilitate

writing system programs with Fortran,

_Function LCC (arg)
This function returns as its value the address of its argument. For example, LOC(A(10))

will have as its value the address of the 10th element of array A.

Function IFETCH (arg)
This function returns as its value the contents of the memory location whose address is in

the argument (it must be an integer). For example, IFETGCH(:1000) will have the value of the

contents of location '1000.

If the symbol XDCT is declared in an external statement, the following statement could
be used to inspect the second word (the ASR flag) of the table XDCT in the OP-16 Configuration

Module.
I = IFETCH(LOC(XDCT)+ 1)

Subroutine ISTORE (argl, argl)

This subroutine is used to set the memory location whose address is contained in the
first argument to the value contained in the second argument. If used as a function, it returns
the previous contents of the specified memory location. In the following example, the value -2
is stored in location '61 (Real-Time Clock).

CALL ISTORE(:61, -2)

New Frror Diagnostics

OUY If undefined asseinbly op code.
IR Interrupt return statement not in an interrupt block.
B! If interrupt block in a subroutine or function.

EXTENDED MEMORY

The following three conditions must be met for the OP-16 Operating Sysi:éx*n to operate in

Model 316 or 516 systems with extended memory (more than 16K).
1. The third word (labeled XEXA) in table XSPT (Executive Special Parameters

Table) must be set to nonzero,

2., The loading option (P=XX006) of LDR-APM (loads object programs in the
extended desectorizing mode) must be used when building the system.

3. Attention should be given to the programming considerations required for
programs to operate in the Extend mode (see the 316/516 Programmers'
Reference Manual, Doc. No., 70130072156, for discussion}.

The handling of indexed instructions is the most important difference between
Normal and Extend mode. Programs written to operate in the Normal mode

may not necessarily operate correctly in the Extend mode.

Normal mode is not permitted when table XSPT indicates that the Extended

Addressing option is present,

Op-1l6 systems may run without any or all of the following routines: Error Print Program,

OPTRAC, and Keyboard Program. The rules for eliminating these routines are given below.

Error Print Program

The following subroutine must be linked into the systemn in place of the Error Print

Program.

SUBR ED
RIEL
D DAC e
JMP ED
FEIND

The entries for program EP in XPLT and XPET, as well as the SUBR ER statement at

the beginning of XCOM, must be omitted.

OPTRAC

The following subroutine must be linked into the system in place of OPTRAC.

SUBR OPTRAC, OPTR
REL
OPTR DAC
M P OPTR
SND

Keyboard Program

The entries for program KB should be omitted from XPLT and XPET. The {ollowing
statement should be added at the end of table XSPT (Executive Special Parameters Table),
KR DAC
BSz. 2

8§-22

APPENDIX A
SEGMENT REFERENCE TABLE

The following table gives the relationship of sectors (512-word blocks defined by the
hardware) and segments (128-word blocks defined by RTX-16). All numbers are in octal.

Lines have been drawn at 4K intervals showing the highest sector and segment for 4K through

32K memories,

Memory Starting Mearnory NATTE YT
Size Secton Segiment Adidioss Sire Gecton RSO Sadrhioes,
. o EENES £ SR T o
0 0 12K 20 100 ZOGG
1 200 LY 20200
2 400 102 20400
3 600 103 20600
1 4 1000 21 104 21000
5 1200 105 21200
6 1400 106
7 1600 107
2 10 2000 22 110
i1 2200 111
12 2400 112
13 2600 113 22600
3 14 3000 23 114 23000
15 3200 115 23200
16 3400 116 23430
17 3600 117 238600
4 20 4000 24 120 24000
21 4200 121 24200
22 4400 122 24400
23 4600 123 24600
5 24 5000 25 124 25000
25 5200 125 25200
26 5400 126 25400
27 5600 127 25600
6 30 6000 26 130 26600
31 6200 131 26200
32 6400 132 26400
33 6600 133 26600
7 34 7000 27 134 27000
35 7200 135 27200
36 7400 136 27400
b 37 7600 137 27600
8K 10 40 10000 16K 30 140 G00060
41 10200 141 20200
42 10400 142 30400
43 10600 143 30600
1" 44 11000 31 144
45 11200 145
46 11400 146
a7 11600 147 31600
12 50 12000 32 150 32000
51 12200 151 32200
52 12400 162 32400
53 12600 153 32600
13 54 13000 33 154 33000
55 13200 155 33200
56 134060 156 33400
57 13600 157 33600
14 60 14000 34 160 34000
61 14200 161 34200
62 14400 162 34400
63 14600 163 34600
15 64 15000 35 164 35000
65 15200 165 35200
66 15400 166 35400
67 15600 167 35600
16 70 16000 36 170 36000
71 16200 171 36200
72 16400 172 38400
73 16600 173 36600
17 74 17000 37 174 37050
75 17200 175 37200
76 17400 176 37400
77 17600 177 37600

Ry

Giza

208
201

Address

40000
40200

Stavting

202 40400
263 40600

41 204 41000
205 41200

208 41400

207 41600

42 210 42000
211 42200

212 42400

213 42600

43 214 43000
215 43200

216 43400

217 43600

44 220 44000
221 44200

222 44400

223 44600

45 224 45000
225 45200

226 45400

227 45600

46 230 46000
231 46200

232 48400

233 46600

47 234 47000
235 47206

236 47400

237 47600

24K 50 240 50000
241 50200

242 50400

243 50600

51 244 51000
245 51200

246 51400

247 51600

52 250 52000
251 52200

2652 52400

253 52600

53 254 53000
255 53200

256 53400

257 53600

54 260 54000
261 54200

262 54400

263 54600

55 264 55000
265 55200

266 55400

267 55600

56 270 56000
271 56200

272 56400

273 56600

57 274 57000
275 57200

276 57400

277 57000

Mesnory
Bize Sector Segrnent
28K 60 300 6OO00
361 GU200
302 60400
303 60600
61 304 81000
305 61260
306 61400
307 61600
62 310 62000
311 62200
312 62400
313 52600
63 314 63000
315 63200
316 63400
317 GGG
64 320 64600
321 64200
322 64400
323 64600
65 324 65000
325 65200
326 65400
327 65600
66 330 66000
331 66200
332 86400
333 656600
67 334 67000
335 67200
336 67400
337 67600
32K 70 340 70000
341 70200
342 70400
343 70600
71 344 71000
345 71200
346 71400
347 71600
72 350 72000
351 72200
352 72400
3563 72600
73 354 73000
355 73200
356 73400
357 73600
74 360 74000
361 74200
362 74400
363 74600
75 364 75000
365 75200
366 75400
367 75600
76 370 76000
371 76200
372 76400
373 76600
77 374 77000
375 77200
376 77400
377 77600

APPENDIX B
INTERRUPT REFERENCE NUMBERS ASSIGNED IN RTX-16

Number Option_

1 Mass-store device

2 High-Speed Paper-Tape Reader
3 High-Speed Paper-Tape Punch
4 ASR Typewriter

5 Alarm Typewriter

6 Logging Typewriter
7 Magnetic Tape TCU 1
8 CR, CRP
9 LP

10 SDLC 1

11 SDLC 2

12 SDLC 3

13 SDLC 4

14 A/D (A)

15 WD

16 TC 1

17 ASYNCH

18 COUNTER

19 A/D (B)

20 TC 2

21 TC 3

