o
o
=
(]
wl
Ll
O]
<
X
=
—
()
o
™~
x
=
—

oneywa;!

0S/700

SYSTEM 700

S

OFTWARE

42-AG08, Rev. 1

Ref.

Honeywell Bull 1nk-700 LINKAGE EDITOR

SYSTEM-700 0s/700

SUBJECT:

Functions and Commands of the Linkage Editor.

SPECIAL INSTRUCTIONS:

This manual supersedes the previous edition, dated July, 1972, 1It has
been extensively revised and rewritten; therefore, additions and
changes are not indicated by change bars and asterisks.

SOFTWARE SUPPORTED:

This manual supports 0S/700. See the preface of the 0S/700 Systems
Manual, Order Number AG02, Addendum A, for information about releases
supported by this manual.

DATE:
December 1974

Printed in France
Ref : 61A,2-AGO8,Rev.1

PREFACE

This manual describes the LINK-~700 Linkage Editor.

Section I describes linkage editor functions.

Section II describes the functional groups of linkage editor commands.

Section III explains linkage editor commands and error messages.

Appendix A describes linkage editor link text.

Appendix B contains»a sample program and the resulting linkage map.

Appendix C summarizes linkage editor commands,

The following software manuals are important references for further
information:

0S/700 DAP-700 Macro Assembler (Order No. AGl7)

05/700 Operators Guide (Order No. AGl4)
System 700 Programmers' Reference Manual (Order No. AC72)

The following symbology is used in this manual:

e Uppercase characters represent reserved words or symbols and must
be used or entered exactly as shown.

e Lowercase characters represent a symbolic name or value, the actual
value of which is supplied by the user.

e Brackets [] indicate that the enclosed entry is optional.
e Braces {} indicate that an enclosed entry must be selected.

e Arrowhead brackets < > are sometimes used to enclose and signify
operands.

e (P) represents the control-p character on the console; i.e., P
typed with the control key held down.

This document is issued for information only. Specifications, data
and information may change after the date of printing. Latest specifi-
cations, data and information are available upon request and will be
the subject of subsequent releases issued from time to time.

© 1972, 1975, Honeywell Information Systems Inc. File No.:
()19?5 Honeywell Bul!

Depot iégal: 4 Trimestre 1975

1923

AGO8

PREFACE {(cont)

Each section/appendix of this manual is structured according to the heading
hierarchy shown below. Each heading indicates the relative level of the text
that follows it.

Level Heading Format
1 (highest) ALL CAPITAL LETTERS, UNDERLINED
2 Initial Capital Letters, Underlined
3 ALL CAPITAL LETTERS, NOT UNDERLINED
4 Initial Capital Letters, Not Underlined
5 (lowest) ALL CAPITAL LETTERS FOLLOWED BY COLON: Text

begins on the same line

iii AGO8

Section I

Section II

Section I1II

CONTENTS

Linkage Editor Functions
08/700 Program Development ...

Definition of Terms
Linkage Editor Tasks
Desectorization
Desectorization Areas
Desectorization Modes

Module Selection and Placement
SECT Mode Linkingeeceeeees
Desectorization Under SECT Mode Linking

.
.
.
-

e u 0

.
.
.
.

. e s

Relocation of Moduleso000ns
Resolution of External References ..

Allocation of the FORTRAN COMMON

Establishment of Overlays ..

Effect of Transient Code Groups on

Desectorization

e s e s

CEE B

CECRE N W}

¢ s e

LR I Y

LI R T S A S N I I R A)

Effect of Transient Code Groups on SECT

Mode Linking

Effect of Transient Code Groups on

I A I R R IR S A I)

External Linkingveeeevnsecccnnns

Functional Groups of Linkage
Stream Assignment Commands
Object Text Input Commands
Module Selection Commands
Module Placement Commands
Desectorization Commands .

Editor Commands ..

v oo

Special Link Text Commands ...

Link Map Commands
Symbol Table File Command

Symbol Definition Commands ...

Transient Code Group Command
Conditional Command Execution Commands

DY

Linking Process Termination Commands ..

C A)

Linkage Editor Commands and Error Messages

Linkage Editor Initialization ...

Linkage Editor Initial Conditions A
Linkage Editor Command Setcceeeeruns

Address Command (ADDR) .

BASE Commandooecoseooseccossa

Block Storage for Desectorization Command

(BSD) ..ivueetvennenen

Identification With Copyright Command

(CIDNT) teveevenoeonscocncasoosans

COMMON Address Command (COMM)

CULL Mode Command

Definition of Symbol Command

(EXD) .. ceeeesoscsnnna
Finish Command (FIN) ...

(DEF) .
Enter Extended Desectorization Mode Command

FORCE Mode Commandceeoeceseess
(GAPT)

Gap Table Generation Command

Gap Base Command (GBASE)

Identification Command (IDNT)

iv

.

-

¢« o s 0 00

)
Q
o]
@

E I T B {

LI T B |]
RSO B D W
[eNoNoNe]

Pt b e b e b
1

=k

1 i]
R O
N

1
—
N

NN DN ot
[}
QYU U B b W

W Wwwww
}
W N

PHHOO

AGOS8

Section III

Appendix A

Appendix B

Appendix C

Figure 1-1.
Figure 1-=2.

Figure 1-3.

Figure 1-4.
Figure 3-1.
Figure A-1l.
Figure A-2.
Figure A-3.
Figure A-4.
Figure A-5.
Figure B-1.
Figure B-2.

Table 3-1.

(cont)

CONTENTS (cont)

Conditional Command Execution Command (IFN,
IFZ) ¢ eeteosensronncssansnnnsen s E e e e s
Initialize Command (INIT)cccceeecens
Library Mode Command (LIB) ceesee e
LINK Command ..ceesceoessossncscas c e
Leave Extended Desectorization Mode Command
(LXD) seeeannnn e e enee e feeeea
MAP COMMANd wovevsoscssncacosoaanononssnsss
Modular Origin Command (MORG) e deras e e
NCULL Mode Commandcoocveosses e
Normal Mode Command (NORM)cecesceenn
QUIT Commandseocevveserscccncssossnsns
SKIP Commandseecocesssoveoonnsssanssas
STEP Mode Commandoeeoessseenes -
Stream Assignment Commands (BI,BO, CI MO Oo)
Symbol Table File Generation Command (SYMT)
TOTAL Mode Commandov0cceeen. et e
Establish Transient Code Group Command
(TCG) v cveonnancens C e et se e s a et ae s e

Error MeSSAUEeS ... ueeessesnassssssscasasssnsase

LINK=700 Link TeXtccorseseccnene e

Internal Data Formatcc00.. e

Identification Block - Block Type 2 «.oee.-.
Transient Code Definition Block - Block

Type 4 Ceee e e res s ae ey

Data Block - Block Type 0

Transient Code Group Block - Block Type 5 .

End Block - Block Type 1 e

Sample Program and Mapeoeveeeeen P

Summary of Linkage Editor Commands

ILLUSTRATIONS
0S/700 Program Development e

SECT Mode Linking of Mcdules in Descending Order
by Sizec.c0.. e s ceuarreasseecr st esnnan
SECT Mode Linking of Modules in Ascondlnq Order Dy

Size

Allocation of the FORTRAN COMMON ceecseeecan

Sample

Link Map «cvcevrvnanenaeruscnnannenns e

Identification BlOCK .. veue vt neoceeconoaasnonons
Transient Code Definition Blockcciuee....
Data Block et e e it e e e s
Transient Code Group Blockiiiiiennva,.
ENA BlOCK t it i toiieeeeeesoasnacesonsosnnaoassasssss

Sample

PYOGTAM & v ee v vonnmnnnnnenoscnssoneanannnnn

Map Resulting From Sample Program

TABLES

Linkage Editor Error MeSSagesS ...eeiecoeaneonnn.o-

=
i i
© N

LI |
~1

m>’>3’?:ﬂwrdw
oW WR RN - WO

&
|

AGO8

SECTION I
LINKAGE EDITOR FUNCTIONS

The LINK-700 Linkage Editor runs as an .activity under 08/700. It produces
link text modules by linking object modules produced by a language processor
(e.g., DAP-700)}.

05/700 PROGRAM DEVELOPMENT

0S/700 program development is illustrated in Figure 1-1. The user must
have an 0S/700 disk operating system (DOS) with a DAP-700 Macro Assembler, LINK-
700 Linkage Editor, EDIT-700 Text Editor, FORTRAN~700 FORTRAN Translator, and
DOS utilities. DAP-700 and FORTRAN source files must be created on disk hy
using DOS utilities or the text editor. The FORTRAN Translator converts FORTRAN
source files into DAP~700 source files, and produces a FORTRAN listing, if
desired. The DAP-700 Macro Assembler assembles the resulting DAP-700 source
file and/or a user-coded DAP-700 source file, and creates a DAP-700 object file
and a listing file. The linkage editor can link any number of object files to
produce link text of the complete program. A link mdp and symbol table file are
produced, if desired. Utilization of link text is determined by the following
factors:

e If the program will be disk resident in an 0S/700 disk operating
system, the load activity (LA) DOS utility command is used to
convert the link text to activity format on the disk.

e If the program will be used in an offline environment, or if it
will be memorv resident at initialization of an 05/700 system, the
link text is transferred to an external medium; e.g., magnetic
tape or cards, using the DOS transfer media (TM) command. The link
text is then read from the external medium into memory using the
appropriate link text loader.

e If the program will be stored on an external medium and read into
memory using the load activity ($LA) core operating system (COS)
command, the link text must be transferred to an external mcedium as
described above. It is then transformed into core-image text using
the activity core-image text generator.

1-1 AGO8

S—

juswdoiaacqg weiboxd 00L/SO "T1-1 aanbtg

o
-

) —
ON11S HJ
NYWL¥Od |

T iﬂu o)

A I
i _|\ 114 (- unmww.. ! wux:omw
ENIISIT , NVELN0Z
..... — - -ava . ooL- q«all. HOLYISNYHL sn
Ruowaw ' i \ e 0oL 1 NLL¥O I T.._ S35 _

((((((((CNWWNOD BOLYWANID.

A — | N
mu<:-uuou © kgicie @ SGUYO e—i X3l neG:T/ ,/I

M | vis sl WAL auos mtaaoy
sontea o “

- SQUYD g J_ , 7 ary

e ¥O FdVl d S

FDUNCS

ﬁr !) anrd ! T 00L=d¥ !

xuowaw oinr | waovo1) TN . 153080 | $2TASEY .lr G303

1XAL NI 3 yap AN ALIAILOY ooL-dva [T OMIW D0L 4G | -¥asn

soNINE | gnwmwm . 3 M ~ ,.

oon\mow —

-

AGO8

DEFINITION OF TERMS

this

An understanding of the following terms is necessary for comprehension

manual.

Base sector - The sector that all memory-reference instructions can
access directly. It is usually the same as sector 0 (the first
sector of memory), but can be relocated by the base sector
relocation (J~base) hardware option.

External symbol name - The name of a data item or instruction defined
within one module which can be referenced within another module
or by linkage editor commands. An external symbol name is
defined within a module as an entry point or by using the linkage
editor DEF command. ‘

Gap - Unused area of memory, generated by SECT mode linking; into
which a module can later be linked.

Indirect address word - Pointer to a memory location that is used in
conjunction with memory-reference instructions to access a
location outside the two sectors that a memory-reference instruc-
tion can access directly.

Link address - The first even-numbered address1 beyond the last module
linked, unless that module was linked in a gap. The next module
is linked at this address unless SECT mode linking occurs or the
address is altered by the ADDR command. :

Link text module - An absolute memory image of the linked program.

- Object module - A sequence of object text blocks prefaced by a text

identification block and terminated by an end block. It is the
result of a single assembly of a source module with one END
pseudo-operation. A symbol table file produced by the linkage
editor is also an object module. There can be more than one
object module per file.

Overlay - The portion of a program that is loaded into main memory
when the functions it performs are required.

_Primary base area - Area reserved in the base sector, whether or not

it is sector 0, by the BASE command or SETB pseudo-operation.
This area is used for desectorizing instructions in all sectors.
(See "Desectorization" later in this section.)

Pseudo-operation - The DAP-700 Macro Assembler source code that
specifies auxiliary actions to be performed by the assembler
and/or the linkage editor.

Relocatable code - Code that can be relocated within memory. Its
absolute memory address is assigned by the linkage editor.

Root program - The portion of a program that resides in main memory
during the program's execution; i.e., it is not overlaid. The
root program is transient code group 0. (See the 0S/700 DAP-700
Macro Assembler manual.)

Stream - Linkage editor input or output; represented by a two-
character mnemonic. Depending on the user's requirements, input
can be object text or commands, and output can be object text,
link text, or memory maps. Linkage editor commands can assign
0S/700 disk files to streams. '

Transient code group - Program code that is part of an activity
configured so that it is stored on disk and read into main memory
when required for execution. Transient code groups are numbercd
from 0 to 126; 0 is the root program.

of

1For compatibility with earlier Honeywell minicomputers, the link address is
always even. .

AGO8

LINXAGE EDITOR TASKS

The linkage editor performs the following tasks which are described later
in this section:
e Desectorization
Module selection and placement
SECT mode linking
Relocation of modules
Resolution of external references
Allocation of FORTRAN COMMON
Establishment of overlays

Linkage editor commands provide the user with full control over the linking
process. (See Sections II and III.)

Desectorization

The 716 Central Processor's memory is divided into sectors of 512 words
each., A memory-reference instruction can directly address any word in the cur-
rent sector (i.e., the sector containing the instruction), or in the base
sector. The base sector is sector 0, unless changed using the base sector
relocation option. The word referenced can be either the instruction's operand
or an indirect address word. This indirect word points to the instruction's

operand directly or via further indirect address words. (See the System 700
Programmers' Reference Manual for a detailed description of addressing.) 1If an

instruction's operand resides in neither the current sector nor the base sector,
it can be accessed only by using an indirect address word or by indexing.
Desectorization is the process of forming indirect address words so that memory-

reference instructions can access operands in any sector of memory.
A program can be desectorized explicitly, using DAC and XAC pseudo-

operations. These two pseudo-operations cause the assembler (rather than the

linkage editor) to form indirect address words, as in the example below.

1-4 AGO8

0001 *

0002 *

0003 REL

0004 *

0005 *

0006 00000 -0 02 00771 LDA* POINTR Get data through

0007 * indirect address word.
0011 *

0012 00771 0 001366 POINTR DAC DATA Address of data word.
0013 *

0017 *

0018 01366 000005 DATA DEC 5

0019 *

0020 *

0021 END

DATA 001366 POINTR 000771

0000 WARNING OR ERROR FLAGS
DAP-70Q0 REV. E 74-05~14

. DAP-700 Macro Assembly Language allows memory-reference instructions to be
coded without regard to sector addressing constraints. The following cxample
illustrates an LDA instruction accessing a data item in another sector. To
desectorize this instruction, the linkage editor forms an indirect address word
that contains the address of the instruction's operand, stores chis word in the
sector containing the instruction or in the base sector, and generates an LDA*
instruction that references the indirect address word. The user must provide a

desectorization area in which the linkage editor can store the indirect address

word.
0001 *
0002 *
0003 - REL
0004 *
0005 *
0006 00000 0 02 01366 LDA DATA Let linkage editor
0007 * desectorize instruction.
0011 *
0012 00771 BSD 1
0013 *
0017 *
0018 01366 000005 DATA DEC 5
0019 *
0020 *
0021 END

DATA 001366

0000 WARNING OR ERROR FLAGS
DAP-700 REV. E 74-05-14

DESECTORIZATION AREAS

There are two types of desectorization areas: primary and secondary.

The SILTB pseudo-operation and the BASE command arc used to specify a
primary descctorization area. When the linkage editor desectorizes memory-
reference .nstructions, the sector that contains the primary desectorization
area is considered the base sector. When the memory-reference instructions are

executed, that base sector must be selected.

A secondary desectorization area resides either in the base sector or in the
sector con—aining the instructions to be desectorized (i.e., the current
sector). .t is specified using the BSD pseudo-operation or the BSD command.

When the linkage editor forms an indirect address word, the area in which
it is stored is chosen according to the following priorities:

1. Secondary desectorization area in the current sector

2. Secondary desectorization area in the base sector

3. Primary desectorization area (must be in the base sector)

DESECTORIZATION MODES

The linkage editor supports two desectorization modes: normal and extended.
These modes correspond to the two addressing modes of the 716 Central Processor,
A program should be linked in the desectorization mode corresponding‘to the
addressing mode in which it will be executed. The proper desectorization mode
is essential for desectorizing indexed instructions, handling addresses larger
than 16K, and using DAP-700 features related to universal coding: index tags 2

and 3, and the PXA pseudo-operation.

The EXD pseudo-operation and EXD command put the linkage editor into
tended desectorization mode, which is the default mode. The LXD pseudo-
operation and LXD command put the linkage editor into normal desectorization

mode.

Module Selection and Placement

The linkage editor links a module only if one or more of the following
conditions apply:

e The module contains an entry point referenced by a previous module
but not yet defined.

@ The module contains a FRCE pseudo-operation.

e The linkage editor 1is in FORCE modc. (See Section 111, "FORCE Mode
Command.")

¢ The linkage editor is in TOTAL mode. (See Section 11T, "TOTAL Mo
Command.")

1-6 AGO8

g

-/

If a module does not contain a SECT pseudo-operation, it is linked at the
current link address, crossing sector boundaries if necessary. The link address

is then- advanced to the next even-numbered address beyond the module.

A module is linked in a transient code group only if the module satisfies
a previously unresolved reference from that transient code group or transient

code group O.

SECT Mode Linking

With SECT mode linking, if a module is smaller than one sector it is linked
entirely within one sector. If a module is larger than one sector it is linked

starting at a sector boundary.

A SECT pseudo-operation in a relocatable module directs whece the linkage
editor should link the module, based on the following rules:

e If a gap resulting from a previous SECT mode operation or MOhu
command is large enough to contain the module, the module is linked
in that gap.l The link address is not o!tered.

e If the module does not fit into a gap, ii is linked at the link
address, provided the remainder of the current sector is large
enough to contain it. The link address is then advanced to the
next even-numbered address beyond the module.

e If the module is larger than the current sector, it is 1l.aked at
the next sector boundary. The resulting gap is recordeu for
linking other SECT mode modules. The link address is thnen advanced
to the next even-numbered address beyond the module.

SECT mode linking is most efficient if the modules arc linked in descending
order by size. Figure 1-2 illustrates SECT mode linking of five obj~¢t modules
of the following sizes:

2.50
.85
.75
.20
.15

Figure 1-3 shows the same modules linked in ascending order by size,

resulting in less efficient memory usage.

T S — : , ‘ |
Gaps rosulting from unused portions of #BSD (block storagy. tor desectorization)
areas cannot be used for linking modules.

1-7 AGO8

SB SB
OBJ 1 2.50 OBJ 1 2.50
5B S B SB—
SB™ SB— SB-
CURRENT
LINK :
ADDRESS gp | GAP .50 |
SBJ Syt
OBJ 2 -85 CURRENT
LINK
5B SB ADDRESS g5+
SB— SB SB-
(a) (B)
SB SB
OBJ 1 2.50 OBJ 1 2.50
SB | SB _|
SB SB
OBJ 4 .20 OBJ 4 .20
SB GAP .30 SB GAP .30
OBJ 2 .85 OBJ 2 .85
SB GAP .15 SB OBJ 5 .15
OBJ 3 .75 CURRENT OBJ 3 .75
LINK
SB ADDRESSSB
(D) (E)
SB - Sector boundary

Figure 1-2.

SB-t-

R
oBJ 1 2.50
GAP L5U
oBpg 2 .85
s e
GAP V15
onJg 3 . 7
(<)
[}
4.75
SECTORS
CURRENT '
LINK
ADDRESS

CURRLNT
LINK
ADDRESS

SECT Mode Linking of Modules in Descending Order by Sizc

1-8

AGOS8

SB

SB

SB

SB

SB

SB

OBJ 5 ~15] CURRENT 5B BB 5 —75| CURRENT SB —T5575 3 15
LINK 0BT & =5 LINK OBT 4~ 50
N [OBT 4 .20
ADDRESS ADDRESS ap S
SB SB
0BJ 3 .75 CuRRENT
LINK
SB SB ADDRESS
SB SB
SB SB
SB SB
(A) (B) (C)
SB GBI 5 1 SB 1eE7 5 .15 '
OBJ 4 20 OBJ 4 .20
GAP .65 GAP .65
SB SB ,
OBJ 3 .75 OB 3 .75
op | GAP .25 op | GAP 5
OBJ 2 .85 CURRENT OBJ 2 .85
LINK 5.5
. sp ADDRESS SB | GAP - SECTORS
SB — sp -{OBI 1 2.50
SB — SB —
CURRENT '
LINK
(D) ADDRESS
! SB
(1)

SB -~ Sector boundary

Figure 1-3.

SECT Mode Linking of Modules in Ascending Order by Si:ze

1-9

AGO8

NESECTORIZATION UNDER SECT MODE LINKING

SECT mede linking allows the user to determine the maximum number of
indirect address words which can be generated when a modulc is linked. 1If a

module is smaller than a scctor, indirect address words result only from refer-

cnces to locations outside the module. If a module is larger than a sector, the

module is linked starting at a sector boundary, and the user can (1) determine
which instructions cause indirect address words to be generated, (2) organize
rhe module to minimize the number of indirect address words generated, and (3)

provide BSD areas where needed.

Relocation of Modules

The assembler assigns addresses comprising a number and a relocation flag
to program code. The address can be absolute or relocatable. (See Section II
of the 08/700 DAP-700 Macro Assembler manual.) The linkage editor performs a

mapping function between the assembler-assigned addresses and actual menory
addresses according to the following rules:

e If the address is absolute, the numeric value is the actual memory
address. B

e If the address is relocatable, the current link address is added to
the numeric address to determine the actual memory address. The
- 1link address is initially set to '1000 and can be modified by the
linkage editor ADDR command. After each module is linked, the link
address is set to the next even~-numbered address beyond the module.

Resolution of External References

‘When the linkage editor encounters an external reference while linking a
module, it determines whether the referenced external symbol was previously
defined; if it was, the instruction's address can be specified immediately.
Otherwise, the linkage editor records in the symbol table the external symbol
name, the instruction that made the reference, and the instruction's address,
30 that the instruction can be generated when the symbol is defined. Linkage
editor memory map commands produce lists of defined and undefined symbols.

Allocation of the FORTRAN COMMON

The COMMON is a data area that can be shared by numerous FORTRAN programs

and subprograms. DAP-700 programs can also access this area. A COMMON block is
defined in a FORTRAN program by the COMMON statement, and in DAP-700 by the COMM

pseudo-operation.

The COMMON area is allocated starting at the base address, which the user
can designate (see Section III, "Linkage Editor Initial Conditions"), and
extends to successively lower addresses (towards program storage). (See Figure
1-4,) 1If the COMMON area overlaps program storage, memory overflow occurs and

the program must be restructured.

1-10 AGO8

~

2 Wiy

e

{

.

PROGRAMS LINKED AT MAIN PROGRAM INITIAL LINK ADDRESS
SUCCESSIVELY HIGHER
ADDRESSES SUBPROGRAM 1

SUBPROGRAM 2

SUBPROGRAM 3

CURRENT LINK ADDRESS

CURRENT COMMON ADDRESS

COMMON BLOCKS PLACED COMMON BLOCK 3
AT SUCCESSIVELY
LOWER ADDRESSES COMMON BLOCK 2

COMMON BLOCK 1

INITIAL COMMON ADDRESS
Figure 1-4. Allocation of the FORTRAN COMMON

Establishment of Overlays

Users can establish overlays in a program by using transient code groups
and the DAP-700 Macro Assembler. (See the example in Appendix B.) Transient
code groups are memory images into which the linkage editor and the assembler
can store code. Any overlay can be loaded and executed, when required, into the
program's overlay area. The Transient Code Manager Initializer and Transient
Code Manager are subroutines used by 0S/700 activities for managing overlays.
(See the 0S/700 DAP-700 Macro Assembler manual.)

The procedure for establishing overlays in a program is:

1. Use the TCD pseudo-operation to specify the beginning and ending
addresses of the overlay area, and the number of overlays asso-
ciated with the program. Overlays are assigned transient code
group numbers from 1 to 126. The root program (the permanently
memory-resident portion of the program) is transient code group O.
The TCD pseudo-operation must be in the first module linked in the
program, and must be before any executable code in that module.

2. Prior to linking a module that will be part of an overlay, use the
linkage editor TCG command or the TCG pscudo-operation in the
source code to specify the transient code group number. Link the
overlays in the defined overlay area using the linkage editor ADDR
command or the ORG pseudo-operation.

EFFECT OF TRANSIENT CODE GROUPS ON DESECTORIZATION

Indirect address words formed by the linkage editor are stored in
desectorization areas. A secondary desectorization area ¢an be designated in a
transient code group by using the linkage editor BSD command or the BSD pseudo-
operation. The desectorization area is used to desectorize instructions in that
transient code group only. An unused BSD area that is part of a transient code
group other than 0 is not included in a gap table produced by the GAPT command.
(See Section I1I, "Gap Table Generation Command (GAPT).")

1-11 AGOS8

LFFECT OF TRANS1ENT CODE GROUPS ON SECT MODE LINKING
The linkage editor records, in its symbol rable, the number of gaps in each
transient code group. Only gaps in transient code group 0 are included in a gap

table. (See Section III, "Gap Table Generation Command (GAPT).")

FFFECT OF TRANSIENT CODE GROUPS ON EXTERNAL LINKING

A symbol can have the same name, but different values, in several transient

code groups.

An external reference by a module in transient code group 0 (the root pro-
gram) can be resolved by a symbol defined in any transient code group; the most
recent definition of the symbol is used. If the symbol is not yet defined, the
first subsequent definition of that symbol is used.

An external reference by a mcodule in transient code group 1 through 126 can
be resolved only by a symbol defined in that transient code group or in the root
program. If defined differently in both places, the definition in the root pro-

gram is used.

When a symbol is defined in the root program, all previously unresolved

references to that symbol are resolved.

When a symbol is defined in transient code group 1 through 126, all pre-
viously unresolved references to that symbol in the root program and in that
transient code group are resolved. References in other transient code groups

are not resolved.

1-12 AGO8

TN

SECTION IX
FUNCTIONAL GROUPS OF LINKAGE EDITOR COMMANDS

Linkage editor commands have the following functions:
Asgign streams to 0S/700 files
Control object text input
Control module selection
Control module placement
Control desectorization
Produce special link text
Produce link maps

Produce a Symbol table file
Control symbol definition
Specify a transient code group
Control command execution

® 8 ® ® ® ¢ & o & o ¢ O

Terminate the linking process

Command functions are described below. See Section III for command usage

and formats.

STREAM ASSIGNMENT COMMANDS

BI
CI
BO
MO
00

Stream assignment commands are used to assign I1/0 streams to 0S/700 files.
The linkage editor reads object text through the binary input (BI) stream, and
commands through the command input (CI) stream. It writes link text into the
binary output (BO) stream, maps into the map output (MO) stream, and symbol
table files into the object output (00) stream. Commands can also be entered

from the console, and maps can be printed on the console.

OBJECT TEXT INPUT COMMANDS

LINK
SKIP
NORM
STEP

2-1 AGO8

T i

LINK and SKIP command:s causce object text to be read from the binary input

ctream. LINK causes obi-ct .wnlnles that are read to be linked or ignored
according to the rules of wodule selection. (See "Module selection and Place-
ment" in Section I.) If a bhinary output stream is assigned when a module is
iinked, link text is producud as object text is read. SKIP causes object

modules that are read to be 1gnored. This command is uscd to bypass object

modules within an object library.

NORM and STEP determine how object modules are read from the binary input
stream following a LINK command. 1f a NORM command was executed, LINK causes
uobject modules to be read from the binary input stream until an end of file is
encountered. If a STEP command was execated, a LINK command causes object

modules to be read until one is linked (not ignored).

NORM and STEP commands are significant only when reading object libraries.
NORM is usually used with the LIB command to scan a library of subroutines and
link thosc subroutines referenced by a main program. STEP is used when modules

in an object library must be linked individually.

NORM and STEP are complementary commands; each remains in effect until

cancelled by the other. ’

MODULE SELECTION COMMANDS

FORCE
LIB
TOTAL

When a LINK command is used to read a module, FORCE, LIB, and TOTAL com-

mands can be used to determine whether the module will be linked.

A FORCE command causes the next module read using a LINK command to be
linked unconditionally. The FORCE command affects that module only. If read

using the SKIP command, the module is ignored.

Following the execution of a LIB command, each object module read using a
SINK command is linked if one of the following conditions apply: a FORCE com-
mand is in effect, the module contains a FRCE pseudo-operation, or the module
contains at least one entry point that satisfies a previously unresolved refer-
ence from the same transient code group or from transient code group 0. Other-

wise, the module is ignored.

Following the execution of a TOTAL command, all object modules read using a

LINK command are linked unconditionally.

2-2 AGOS8

g

LIB and TOTAL are complementary commands; each remains in effect until
cancelled by the other, although a FORCE command overrides a LIB command for the
first module read following a FORCE command.

MODULE PLACEMENT COMMANDS

ADDR
MQRG
GHASE
cOoMM

ADDR and MORG commands change the link address. ADDR changes the link
address to a designated value; MORG advances the link address to the next ;
address that is a multiple of a designated value, and produces a gap cor- {
responding to the area between the previous and current link acdresses. ‘

ADDR is used to set the initial link address, or to change the link address
when the next module read will not be linked immediately following the previous
module,

MORG is used when a module must be linked at a particular boundary; e.g., a .

sector boundary.

GBASE causes gaps below the link address, or below a designated address, to
be ignored during SECT mode linking. GBASE allows SECT mode linking to be

performed while controlling module placement.

COMM selects the beginning address for allocation of COMMON blocks. COMMON ;
blocks are assigned successively lower addresses. :

DESECTORIZATION COMMANDS

BASE
BSD
EXD
LXD

BASE and BSD commands allocate desectorization areas, which are used by the
linkage editor for storing indirect address words. BASE specifies a primary
desectorization area, and designates the sector containing this area as the base
sector for subsequent modules. BSD specifies a secondary desectorization area.
BASE and BSD commands are equivalent to SETB and BSD pseudo-operations,

respectively.

EXD and LXD commands cause the linkage editor to desectorize subscquent
modules for execution in extended or normal addressing mode respectivoely. EXD
and LXD are complementary commands that are equivalent to EXD and LXD pseudo-

operations. Each command remains in effect until cancelled by the o!hLer.

2-3 AGO8

SPECIAL LINK TEXT COMMANDS

IDNT
CIDNT
GAPT

IDNT and CIDNT commands are used to write link text identification blocks
into the binary output stream. IDNT produces an identification block which con-
tains a specified string. CIDNT produces two blocks; one contains a specified
string and one contains a Honeywell copyright notice. These identification
bblocks are printed on the console by Honeywell programs that read link toxt.

GAPT causes link text data blocks to be written into the binary output \
stream. Link text data blocks are a memory image of a table of all gaps and
unused desectorization areas in transient code group 0. (See Appendix A "LINK-
700 Link Text.") By examining the gap table, a program can locate unusecd memory

areas that can be used to store data.

LINK MAP COMMANDS

MAPS
MAP
MAPF

MAPS, MAP, and MAPF commands cause link maps to be written into the map
output stream. These commands can be specified at any time during linking to
write any number of maps. MAPS, MAP, and MAPF generate short, intermediate, and

full-size maps, respectively.

SYMBOL TABLE FILE COMMAND

SYMT

The SYMT command causes the linkage editor to write into the object output
stream an object module that contains an entry point for every currently defined
symbol in the linking process. These symbols can be used in future linking

processes.

For example, if program B references external symbols defined in program A,
the symbol table is produced when linking program A and linked as part of program
B. The same effect can be achieved using the FIN command if both programs are
linked during the same execution of the linkage editor.

SYMBOL DEFINITION COMMANDS

DEF
NCULL
CULL

2-4 AGO8

The DEF command allows a symbol to be defined explicitly during a linking
process. A symbol can also be defined by an entry point in an object module.

DEF is useful in:

e Defining hardware device addresses for programs with external symbols
in the device address field of I/0 instructions

e Defining symbolic parameters for linkage editor commands before the
command file in which they appear is assigned to the command input
stream

NCULL and CULL govern the criteria by which the linkage editor enters
symbol definitions into its memory-resident symbol table. When NCULL is in
effect, any symbol defined by DEF or by an object module entry point is entered
into the symbol table, unless the symbol was defined previously in the current
transient code group. When CULL is in effect, the symbol must satisfy a pre-
viously unresolved reference from the current transient code group or from

transient code group 0.

NCULL and CULL are complementary commands; each remains in effect until
cancelled by the other. Typically, CULL mode is used when linking a symbol
table file from a previously~-linked program, so that symbols defined in the
first program are retained only if they are referenced in the program currently

being linked.

TRANSIENT CODE GROUP COMMAND

TCG

The TCG command directs the linkage editor to assign code in subsequently
linked object text to a specified transient code grcup. Symbols subsequently
defined by DEF, or by an object module entry point with no explicit transient
code group assignment, are assigned to that transient code group. The TCG com-

mand is equivalent to the TCG pseudo-operation.

CONDITIONAL COMMAND EXECUTION COMMANDS

IFZ
IFN
ELSE
ENDC

IFZ, IFN, ELSE, and ENDC commands allow other linkage editor commands reéad
from the command input stream to be conditionally executed. These commands have
the same functions as similarly-named DAP-700 pseudo-operations. With condi-

tional command execution, a linkage editor command file can be written that suits

a variety of situations.

2-5 AGO8

LINKING PROCESS TERMINATION COMMANDS

INIT
FIN
QUIT

INIT, FIN, and QUIT commands terminate the current linking process; link
text generation is completed and the BO stream is closed. INIT reinitializes
the linkage editor to its original state, except that the common address assigned
v the most recent COMM command is preserverd. FIN differs from INIT in that all
symbol and COMMON block definitions are preserved for a subsequent linking pro-

coss. QUIT terminates the linkage editor activity.

2-6 AGOS8

SECTION IXI
LINKAGE EDITOR COMMANDS AND ERROR MESSAGES

The linkage editor sequentially reads and processes command lines. Each
command line consists of one or more linkage editor commands. Some commands
require numeric parameters, which are denoted in the command syntax by num.
Num can be one term or a sequence of terms separated by a plus sign (+), de-
noting addition, or a minus sign (=), denoting subtraction. The results of
arithmetic operations are truncated to 15 bits. valid terms are:

Pecimal constants - One to five decimal digits
(maximum value is 32767)

Octal constants -~ Apostrophe (') followed by one to 8ix octal
digits (maximum value is '177777)

Hexadecimal constants - Dollar sign (§) followed hy one to four hexa-
decimal digits (maximum value is S$FFFF)

External symbol name - Must be defined in the current transient code
groupl or in the root program. If defined
differently in both places, the value in the
root program is used. :

LINKAGE EDITOR INITIALIZATION

The linkage editor is initialized by entering the schedule activity ($SA)
system command through the console:

(P)$SA ZLE (CR) >

(P) - Control-P {(nonprinting character)
ZLE - Linkage editor activity name

lThe current transient code group is the last transient code group speci-
fied by a TCG pseudo-operation or by the linkage editor TCG command.

2(CR) designates carriage return.

3-1 AGO8

In responsc, there is a version identification typeout in the form:

Z2LE LE-700 REV. n Yyy/mm/dd

Command input is initially requested by the typeout:

nn ZLE

nn - Message number for associating operator response
with message printed

ZLE - Linkage editor activity name

Each command line entered through the console must be in the form:
(P) nn<command string>(CR)

(P) ~ Control-P (nonprinting character)

nn - Message number; identical to the one printed in
the command request

<command
string> - Series of linkage editor commands, separated by
commas and terminated by carriage return

Additional commands can be entered through the console, or a command input
(CI) stream can be assigned to a file containing linkage editor commands. Com-

mands issued from a CI file do not require the (P) and message number.
After each command line is processed, the linkage editor issues another
command request so that more commands can be entered; when the linkage editor

receives a QUIT command, the linkage editor activity terminates.

Linkage Editor Initial Conditions

The linkage editor is initially in the state defined by the following
commands: LIB, NORM, FORCE, EXD, GBASE=0, ADDR='1000, TCG=0, and NCULL.
(See "Linkage Editor Command Set" below.) It is returned to this state after

an INIT command is processed.

The default value of the COMMON address is the linkage editor activity's
ending address plus 1, which is configuration dependent. (See "COMMON Address
Command (COMM)" later in this section.) This value can be ascertained with a

MAPS commanc.

The linkage editor establishes a primary desectorization area in locations
'163 through '777 if not user defined before it is required by the linkage
editor. (See "BASE Command" later in this section.) Sector 0 is initially

considered the base sector.

LINKAGE EDITQR CO

ADDR

MMAND SET

Linkage edit
are provided to i
tion for a descri

examples.

Address Command {

or commands are described below, alphabetically. §ome examples
llustrate command usage. See "MAP Command" later in this sec-
ption of MAP, MAPF, and MAPS, which are often designated in

ADDR)

Format:

Function:

Default:

Example:
00 ZLE

ZLE
ZLE
ZLE
ZLE
ZLE
00 ZLE

ADDR=num

Sets the linkage editor link address to the specified
address. If the address is odd, it is advanced by one.
If the next module to be linked is relocatable, it is
linked starting at the specified address, unless it is
being linked in SECT mode. (See Section I, "SECT Mode
Linking.")

ADDR='1000
! OOADDR="'2000,MAPS
STATE

ADDR 02000
COMM 40300
!

3-3 AGOS8

BASE

BASE Command

Formats: BASE=numl<num2
BASE=numl

Function: Establishes a primary desectorization area. The arca
starts at the address specified by numl and extends to
the address specified by num2. If num2 is not in the
same sector as numl, or if num2 is omitted, the area
extends from numl to the end of the sector containing
numl. When desectorizing subsequent instructions, the
sector containing the primary desectorization area is
considered the base sector. The base sector relocation
register should be set to the same sector when the in-
structions are executed.

NOTE: If a program with a relocated base sector (J-base) is to be
linked with the linkage editor, the base area should begin
at the sector boundary plus 6 to bypass hardware register
addresses 0 to 5 in the relocated base sector; i.e., base
would be xxx06 for a program starting on sector boundary
xxx00. No error message is produced if this is not done,
but the linked program does not execute properly.

Default: None. If a base area becomes necessary for desectorization,
BASE='163 becomes effective automatically.

Example 1:
BASE command with one parameter:
00 ZLE 1+ OOBASE='1400,MAPS
$
ZLE
ZLE STATE
ZLE
ZLE ADDR 01000
ZLE BASE 01400~-01400-01777
ZLE COMM 40300
00 ZLE !
Example 2:

BASE command with two parameters:

00 ZLE ! OOBASE='400<'767,MAPS
ZLE

ZLE STATE

ZLE ’

ZLE ADDR 01000

ZLE BASE 00400-00400-00767
ZLE COMM 40300

00 ZLE !

3-4 AGO8

S

~ \/F

- .

£

Block Storage for Desectorization Command (BSD)

Format:

Function:

Default:

Example:
00

ZLE
ZLE
ZLE
ZLE
ZLE

00

ZLE
ZLE
- ZLE
ZLE
ZLE
* ZLE
ZLE
ZLE
ZLE

00

BSD=num

Generates a secondary desectorization (BSD) area of the
specified size at the current location. If the area
does not completely fit into the current sector, the
remainder goes into the next sector. The link address
is advanced to the next even-numbered address beyond
the area.

None
ZLE ! OOMAPF
STATE
ADDR 01000
COMM 40300
ZLE ! 00BSD='20,MAPF
STATE
ADDR 01020
COMM 40300
BASE AREAS
01000-01000-01017
ZLE !

BSD

AGO8

CIDNT
COMM

identification With Copyright Command (CIDNT)

Format:

Function:

Default:

CIDNT:character string

character string - May contain as many characters .s can
be typed on one line; all printing
characters, including embedded blanks,
are allowed.

Places the characters following the colon, through the
rightmost nonblank character, into a text identifica~
tion block at the start of the link text. A second
text identification block containing a Honeywell copy-
right notice is also generated. If used, this command
must precede the first LINK commard. If multiple CIDNT
commands are given, all but the first are ignored.

None

COMMON Address Command (COMM)

Format:

Function:

Cefault:

Example:
00

ZLE
ZLE
ZLE
ZLE

00

ZLE
ZLE
ZLE
ZLE
00

COMM=num

Defines the top (beginning) of the COMMON storage area as
num; num replaces the current value and the initial value.
The highest location used for the COMMON storage area is
num minue 1. (The COMMON is allocated from num minus 1
"down.) This area is used for the FORTRAN COMMON and for
the COMMON defined by the COMM pseudo-operation in
DAP-700 source programs.

Linkage editor activity's ending address plus 1.

ZLE ! OOMAPS

STATE

ADDR 01000
CoMM 36750
ZLE { 00COMM='4000,MAPS
STATE

ADDR 0l000
COMM 04000
ZLE !

AGDY

CULL
DEF

CULL Mode Command

Format:

Function:

‘Default:

CULL

Puts the linkage editor into CULL mode. In this mode,

a symbol defined by a module or by a DEF command is re-
corded in the symbol table only if it was previously
referenced within another module but not previously defined.

NCULL

Definition of Symbol bommand (DEF)

Format:

Function:;

Default:

Example:
00

ZLE
ZLE
ZLE
ZLE
ZLE

00

ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
00

DEF:syml=numl[; sym2=num2}...

Defines the value of each symbol specified. Each symbol
is defined in the current transient code group:; if the
symbol is already defined there, this definition has no
effect. If the linkage editor is in CULL mode, only
symbols previously referenced but not yet defined are
recorded in the symbol table.

None
ZLE t OOMAPF
STATE
ADDR 01000
COMM 40300
ZLE ! OODEF:XLNK='1001,MAPF
STATﬁ
ADDR 01000
CcCOMM 40300
DEFINED SYMBOLS
XLNK 01001
ZLE !

3-7 AGOS8

EXD
FIN

Enter Extended Desectorization Mode Command (EXD)

Format:

Function:

Default:

- sh Command

EXD

Puts the linkage editor into extended desectorization mode
(15-bit addresses), which is used when the program being
linked will be executed using extended addressing

mode. EXD remains in effect until terminated by an LXD
command or by an 'LXD pseudo-operation in a module being
linked.

EXD

(FIN)

Format:

Function:

Default:

Example:
00

ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE

FIN

Directs the linkage editor to complete link text genera-
tion and to reinitialize for another linkage editor job.
See "Linkage Editor Initial Conditions" earlier in this
section. Records of undefined symbols, desectorization
areas, and caps are deleted from the symbol table.
COMMON block defintions, the current COMMON address,

and symbol definitions are preserved.

None

ZLE ! OOMAPF

STATE

START 01000
LOW 01000
HIGH 02672
ADDR 02674
BASE 00163-00270-00777
COMM 40277

UNDEFINED SYMBOLS

LINKED
ICOMM

DEFINED SYMBOLS

GENIO 01000
ERROR 02323
F$Cl 02540
F$C2 02543
F$C3 02550
F$C4 02555

3-8 AGO8

g

FL——

ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE

00
ZLE

ZLE
ZLE

. ZLE
"ZLE

ZLE
ZLE
ZLE
ZLE

ZLE’

ZLE
ZLE

ZLE

ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
00

F$C5
F$C6
FS$RB
F$CG
F$AT

BASE AREAS

02561
02565
02571
02615
02623

*00163~00270-00777

. COMMON BLOCKS

SYMTOP

40277

ZLE ! OOFIN,MAPF

STATE

ADDR
COoMM

01000
40277

DEFINED SYMBOLS

GENIO
ERROR
F$Cl
F$C2
F$C3
F$C4
F$C5
FS$SC6
FSRB
F$CG
FSAT

01000
02323
02540
02543
02550
02555
02561
02565
02571
02615
02623

COMMON BLOCKS

SYMTOP
ZLE !

40277

FIN

AGO8

FORCE
GAPT

FORCE Mode Command

Format: FORCE
Function: Causes linking of the next module read after a LINKX command,
regardless of whether the module contains referenced ex-
ternal symbols. FORCE mode remains in effect only until
the next module is linked or skipped.

Default: FORCE

Gap_Table Generation Command (GAPT)

Formats: GAPT
GAPT=num

Function: Causes the linkage editor to write into the binary output
stream a table of memory gaps and unused areas in desec-
torization areas residing in transient code group 3. The
table is generated when the GAPT command is processed.
The table's starting address is the value of num, or the
address HIGH plus 1 (see Figure 3-1) if num is omitted.
The gap table can be examined by any program that wants
to utilize the gaps as data areas. Appendix A describes
gap table format.

Default: None

3-10 AGO8

e

GBASE
|DNT

Gap Base Command (GBASE)

-Formats:
Function:
(
- Default:

GBASE
GBASE=num

When modules are linked in SECT mode, memory areas may
be left unused. The linkage editor records the loca-
tion and size of these gaps for linking future objact
text modules in SECT mode. The GBASE command jinstructs
the linkage editor to ignore gaps below the current link

_address. GBASE=num instructs the linkage editor to

ignore gaps below the value num. Modules are not linked
into an ignored gap, but the gap is in the gap table and
in maps. If a subsequent GBASE command lowers the gap
base, gaps between the old and new gap base are not ig-
nored.

GBASE=0

Identification Command (IDNT)

Format:

Function:

Default:

IDNT:character string

character string - May contain as many characters as
can be typed on one line; all printing
characters, including embedded blanks,
are allowed,

Places the characters following the colon, through the
rightmost nonblank character, into a text identifica-
tion block at the start of the link text. If used, this
command must precede the first LINK command. If multiple
IDNT commands are given, all but the first are ignored.

None

3-11 AGO8

IFN
IFZ

Conditional Command Execution Command (IFN, IFZ)

Formats:

Function:

Default:

Example:
00

ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
00

{IFN
IFZ

Allows other linkage editor commands to be executed con-~
ditionally, based on the value of num. Num can be any
expression, including previously defined symbols. The
IFZ command directs the linkage editor to execute subsc-~
quent commands only if num is 0; otherwise command exe-
cution is inhibited. An ENDC command indicates the end
of this conditional command execution. The IFN command
functions like the IFZ command, except that subsequent
commands are executed only if num is npot 0.

}:num...[ELSE]...ENDC

The ELSE command can be placed between an IFZ or IFN
command and an ENDC command. It reverses the effect
of the IFZ or IFN command on subsequent commands; if
command execution was enabled, it is inhibited until
"ENDC is reached.

A sequence of the above commands can be included within
another such sequence. If command execution is inhibited
because of a previous IFZ, IFN, or ELSE command, the
sequence is ignored; otherwise, the sequence is executed
normally. An ELSE or ENDC command that is not matched

by a prior IFZ or IFN command constitutes a command
error. (See "Error Messages" later in this section.)

If an INIT or FIN command is encountered when command
execution is enabled, the linkage editor is reinitialized
and the effect of previous IFZ, IFN, and ELSE commands is
cancelled. If command execution is inhibited, all com-
mands (including IFZ, IFN, and ELSE) are ignored.

The effect of previous IFZ, IFN, and ELSE commands is
cancelled whenever the linkage editor encounters errors.

IFZ:O}

Command execution enabled {IFN:l

ZLE t QODEF: SWITCH=1

BI=QLIB

IFZ:SWITCH

SKIP,LINK These commands are not executed.
ELSE

LINK,SKIP These commands are executed.

ENDC

LINK

ZLE !

3-12 AGO8

In;tia;ize Command (INIT)

Format:

Function:

Default:

INIT

Directs the linkage editor to complete the link text
generation and to reinitialize for another linkage
editor job. (See "Linkage Editor Initial Conditions"
earlier in this section.) The INIT command is executed
when the user has produced one link text file and wants
to build another one without restarting the linkage
editor. All records of defined symbols, undefined
symbols, COMMON blocks, gaps, and desectorization

areas are deleted from the symbol table.

None

Library Mode Command (LIB)

Format:

Function:

Default:

LIB

INIT
LIB

Puts the linkage editor into LIB mode, in which each mod-

ule read is linked only if:

1. The meodule defines at least one referenced, pre-
viously undefined, external symbol; or

2. The module contains a FRCE pseudo-operation; or
3. A FORCE command is in effect.
The TOTAL command terminates LIB mode.

LIB

AGOS8

L INK
LXD

LINK Command
Format:

Function:

Default:

LINK

Initiates the reading and processing of object text. The
linkage editor stops reading object text and resumcs com-
mand processing at the end of the first linked module if
in STEP mode, or when an end of file is detected if in
NORM mode. See Section I, "Module Selection and Place-

ment," to determine whether a module is linked or ig-

nored.

None

Lrave Extended Desectorization Mode Command (LXD)

Format:

Function:

Default:

LXD

Puts the linkage editor into normal desectorization mode
{l14-bit addresses), which is used when the program being
linked will be executed using normal addressing

mocde. LXD remains in effect until terminated by an EXD
command or by an EXD pseudo-operation in a module being
linked.

EXD

AGOS

MAP

MAP Command

Formats: MAP
MAPS
MAPF

- Function: Directs the linkage editor to produce a link map on the MO
output stream. The MAP command creates a map that contains
the linkage editor "state" information and a list of un~
defined symbols; the MAPS command creates a map containing
only the linkage editor "state" information; and the MAPF
command creates a full map.

The link map comprises the following sections:

e Link Test Identification ~ Copy of ASCII character string provided
by CIDNT or IDNT command; printed only if MAPF is specified.

"® State ~ START - Execution starting address.

LOW - Lowest memory location occupied by procrams,
except base areas and COMMON blocks.

HIGH - Highest memory location occupied by programs,
except COMMON blocks.

ADDR - Current link address.
GAPH ~ Highest memory location occupied by the gap table.

BASE ~ Primary desectorization area's first location,
next available location, and last available
location. If the next available location is
beyond the last available location, the area
is full.

COMM - Current COMMON address.

i CLOW - Lowest COMMON location initialized.
CHIGH - Highest COMMON iocation initialized.
CTCG - Current transient code group number.

,,,
AN

TCDL - Low address provided by a TCD pseudo-operation.
TCDH - High address provided by a TCD pseudo-operation.

o Undefined Symbols ~ Lists all referenced external symbols that have
not been defined; it is not printed if the MAPS option is se-
lected or if there are no undefined external symbols. If an
undefined symbol is referenced by a transient code group other
than 0, the transient code group number is printed in brackets
to the right of the area's ending address.

NOTE: The map information listed below is printed only if MAPF
is specified.

3-15 AGO8

AP

e Defined Symbols - Lists all defined, external symbols and their
corresponding values. If the symbol was defined in a
transient code group other than 0, the transient code group
number is printed in brackets to the right of the symbol name
or symbol value.

e Base Arecas - Consists of one line per desectorization area, listing
the desectorization area's starting address, next available
location, and ending address. Primary desectorization areas
are flagged with an asterisk. If a secondary desectorization
area is in a transient code group other than 0, the transient
code group number is printed in brackets to the right of the
area's ending address.

Gaps ~ Lists the starting and ending addresses of all gaps. If the
gap is in a transient code group other than 0, the transient
code group number- is printed in brackets to the right of the
area's ending address. If the starting address is higher than
the ending address, the gap is full.

. @ COMMON Blocks - Lists all COMMON block names and their respective

low addresses.

Default: None

Figure 3-1 illustrates a complete sample link map.

AGOS8

.

34
Pro:

A

C b e e D

A. -

00

ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
Z2LE
2LE
ZLE
2LE
2LE
LE
2.E
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZILE
ZLE
ZLE
ZLE
Z2LE
00

ZLE

Z2LE

t OOMAPF

LINK TEXT IDENTIFICATION

STATE
START 01024
LOW 01024
HIGH 02527
ADDR 03000
GAPH 04003
BASE 01006-01010-01023 > MAPS
COMM 36604
CLOW 36604
CHIGH 36750
CTCG 00000
TCDL 01305
TCDH 02514

UNDEFINED SYMBOLS

TCM
TCMI

DEFINED SYMBOLS

PROGRM 0102
OVRLAY 0130

BASE AREAS
02511-02511
02214-02214

*01006-01010

GAPS
02530-02777

COMMON BLOCKS

ARRAY 36604
!

4
5

-02514 [00002)
~02216 [00001])
-01023

Figure 3-1. Sample Link Map

\

MAPF

MAP

AGO8

MORG

Modular Origin Command (MORG)

Format:

Function:

Default:

Example:
00

ZLE
ZLE
ZLE
ZLE
ZLE

00

ZLE
ZLE
ZLE
ZLE
ZLE
00

ZLE
ZLE’
ZLE
ZLE
ZLE
00

ZLE
ZLE
ZLE
ZLE
ZLE
00

ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
ZLE
00

MORG=num

Causes the linkage editor to advance the link address

to

the next location divisible by num, which must be

from 21 through 29; i.e., 2 through 512. Skipped lo-
cations are recorded as a gap.

None
ZLE ! OOMAPS
STATE -
ADDR 01000
COMM 40300
ZLE ! OOMORG='400,MAPS
STATE
ADDR 01000
coMM 40300
ZLE ! OOADDR='1001,MORG=4,MAPS
STATE
ADDR 01004
COMM 40300
ZLE ! OOMORG='400,MAPS
STATE
ADDR 01400
CcoMM 40300
ZLE ! OOMORG='1000,MAPF
STATE
ADDR 02000
corM 40300
GAPS
01400-01777
01004-01377
01002-01003
ZLE !

AGO8

NCULL

NORM
QUIT

NCULL Mode Command

Format:

Function:

Default:

NCULL

Puts the linkage editor into NCULL mode. In this mogde,
a symbol defined by a module or by a DEF command is re-
corded in the symbol table if it was not previously de-
fined in the current transient code group. The CULL
command terminates NCULL mode.

NCULL

Normal Mode Command (NORM)

Format:

Function:

Default:

QUIT Command

Format:

Function:

Default:

NORM

Puts the linkage editor into NORM mode. 1In this mode, a
LINK command causes modules to be read from the binary
input stream until an end of file is encountered. (See
Section I, "Module Selection and Placement," to determine
if each module is linked or ignored.) The linkage editor
then reads the command input stream for further commands.
The STEP command terminates NORM mode.

NORM

QUIT

Terminates the linkage editor activity; used when linkage
editor processing is complete.

None

w
'

19

AGO8

- e e

o——

SK1P
STEP

SKIP Command

Forriats: SKIP
SKIP=num

Function: When the SKIP command is given, one module is read and
ignored from the BI stream. When SKIP=num is given,
;he designated number of modules (num) are read and
ignored. If an end of file is encountered before the
designated number of files are read, the process termi-
nates. If num is 0, no operation is performed. Unless
num is 0, the SKIP command terminates FORCE mode.

Default: None

STEP Mode Command

Format: STEP

Function: Puts the linkage editor into STEP mode. In this mode,
a LINK command causes modules to be read from the binary
input stream until a module is linked or end of file is
reached. (See "Module Selection and Placement” in Section
I to determine whether each module is linked or ignored.)
The linkage editor then reads the command input stream for
further commands. Used in conjunction with the SKIP com-
mand, STEP mode allows modules in an object library to be
linked individually. The NORM command terminates STEP

mode.

Default: NORM

3-20 AGOS8

Bl
BO
Cl
MO
00

Stream Assignment Commands (BI,BO,CI,MO,00)

Formats: ‘BI

Function:
NOTES: 1.
2.

BO
C1
lMO
00
52
MO

Assigns I/0 stream (designated by two-character mnemonic)
to an 0s/700 file. File names are from one to six alpha-
numeric characters; the first character must be alpha-
betic., If the €I stream i3 not assigned to a disk file,
commands must be entered through the console. If the MO
stream is not assigned to a disk file, memory maps are
printed at the console.

1=file name

Each input file must be in the 0S/700 default library
for files (FIO}.

Each output file is created in FIO; there must not al-
ready be a file in FIO with the same name.

BI - Object text input stream (binary). Object text can
be either the result of a DAP-700 assembly or a symbol
table file previously generated by the linkage editor
using the SYMT command. (See "Symbol Table File
Generation Command (SYMT)" below.) An object text
file produced by the DAP~700 Macro Assembler con-
sists of one or more object modules. An object
text file containing more than one object module is
called an object text library. The object text input
stream must be reassigned every time modules in a new
object file are to linked.

BO - Link text output stveam (binary). The BO stream is
assigned if a link text image of the program being
linked is desired. The stream must be assigned be-
fore any modules are linked, and it cannot be re-
assigned during the linking process.

CI - Command input stream (ASCII). The linkage editor
usually receives command input from the console, but
command input may also be read from an 05/700 file
assigned to the CI stream. When an end of file is
reached, or if CI is specified without a file name,
the CI stream is reassigned to the console. The
stream can be reassigned at any time during the
linking process.

3-21 AGO8

MO
00

MO - Map output stream (ASCII). A map provides informa-

00

Default:

tion regarding the layout of a linked program. The
linkage editor usually prints maps on the console,
but maps may be written into an 05/700 file using
the MO stream assignment command. If MO is speci-
fied without a file name, maps are printed on the
console. If a file name is specified, maps are
written into an 0S/700 file.

The MO stream can be reassigned at any time during
the linking process. Any number of maps, repre-
senting different stages of the linking process,
can be written into a single file using the MAPS,
MAP, and MAPF commands without reassigning the
stream. Individual files can be obtained by re-
assigning the stream before each APS, MAP or MAPF
command.

Object text output stream (binary). By assigning
an 00 stream and using the SYMT command, an object
text file is produced which preserves the values of
symbols defined during a linking process. These
symbols can be used in subsequent linking processes
by reading the object text file from the binary
input stream.

The 00 stream can be assigned at any time during a
linking process. A symbol table file is not pro-

duced until the SYMT command is executed. 1If another

symbol table file is desired, the stream must be
reassigned.

BI - None
BO - None
CI - Console
MO - Console
00 - None

AGOS8

SYNT
TOTAL
TCG

Symbol Table File Generation Command (SYMT)

Format:

Function:

Default:

SYMT

Directs the linkage editor to write, in the object output
stream (00), a module consisting of the following object
text blocks:

e Identification block

e External symbol definition blocks for all currently
defined symbols

® END block

If a second symbol table file is desired, the QO stream
must be reassigned. (See the 08/700 DAP-700 Macro
Assembler manual, Appendix D.) This command saves in-
formation about a linked program so other programs can
reference symbols it defines. When linking a program
that requires this information, link the symbol table
file.

None

TOTAL Mode Command

Format:

Function:

Default:

TOTAL

Puts the linkage editor into TOTAL mode, in which all mod-
ules read by a LINK command are linked regardless of
whether they define previously referenced, undefined, ex-
ternal symbols. TOTAL mode remains in effect until
terminated by a LIB command.

LIB

Establish Transient Code Group Command (TCG)

Format:

Function:

Default:

s

TCG=num

Establishes the next linked module as a transient code
group. Num can be from 0 to 126. This coémmand does
not affect the link address.

TCG=0

3-23 : AGO8

ERROR_MESSAGES

When the linkage editor detects an error, it issues a messa

ing format, and then requests command input from the console.

XX -
fEEEEE

cceeee -

111111

Table 3-1 1istékand

FILE=£EFEEE [CODE=cccccc]}

ERROR xx { [LINE=11111]]

Two-letter error mnemonic.

Iile name; printed for file-related errors
(if xx is BL, DF, I0, RS, TD, TI, UC, or

UF) .

0S/700 executive macro call error return code

(decimal); printed if xx is IO, denoting I/O
error. (See the 0S/700 Operators Guide.)

Line number (decimal) of the command input
file being processed when the error occurred;
printed only if command input file is being

used, and xx is BO, CE, IA, MO, NT, TO, or
US’

explains error messages, and suggests remedies.

ge in the

follow~

AGO8

¥
ks
p

e~

"setTpsuwsx pue

sapos 10312 O/I I03] @pino
s103exadp 00L/SO 3 .0suod

*burtpury o113 butanp

*HUTHUTT SNUTIUCD 3Jou og 00L/S0 Aq peiloe3sp 1o1ad andano/3andug o1
spurumiod Y¥NIT © butasizua
a1039q weails Qg 9Yy3 ubisse *pueunuod YNIT © I93J weails
pue ssadoxd HUTHUTIT axelsay 0og 2yl o3 poubrsse ST 9114 JuauwutIsse HmmmﬁaH, vI
‘weaIls *S3STXD
ayy 03 2113 3IuU218IJTpP ®© Apraale wesi13s Q0 I0 ‘od
ubtsse 10 871 PIO 93187=qQ ‘OH 2yl o3 paubrsse aTTd 9113 =23ed1(dng Jad
*3T13 JO S3UI3U0D
1
1091100 ‘weaxls ID UT II - pUBWWOD POZTU
*910suod. uo pueuwod adAiay -booaiun 10 10119 xejulkg 10113 PUEBLMWOD cte)
‘pejeaa
-uab piom sso2Ippe IDVIATP
*S8dUIIDIDI I03VIS~-SSOID -UT 8u3 103 esa® uoljez
3 3 - -TI0309S3pP OuU ST [JI3Y3
3ZTWTUTW 03 BUTHUIT JO ISBPIO - :
LA L asnedsq UOTI3IONIISUT ue
sbuexieax I0 ‘evaxe UOTI : :
: 8ZTIO3D3S9Pp Jouued I031pPd
-eZTIO3D8S9p Aaeppuodes 10 -
Kxeutrid {euUOT3TIppe SPTAOT obeyulT Byy "pPIZTTTIN
’ 1 £3TPP B d K11n3 ueeq sey eaae
*BUTHUTT @nuUT3UOCD Jou og UOT3RZTIOFDOSSIPp ATPWTIg MOTJI@A0 10309S ased od
‘2113 309{qo eaeasushea
I0 ¢ (asTquwesse Aq paonpoad
sem o113 ‘°"9°1) 2113 309f
-qo0 u®v ST 2713 3Pyl AjTiaa - qewzog
*BUTUTT 2nuT3UO0D JOou 0g 1eba1iT sey 31x=23 309(q0 I01Ix9 DOTH 14
uoT3oy I03exadp j butuesy xoxaq 3o adily OTUOWIAUR
10113

sobesssw 10113 I03Tp3 obejurq

“1-¢ 319l

AGOS8

3-25

‘2113 309fqo
s3eiousbaz 1o ‘ar1y 3ol
-qo ue ST 9TTF Iyl AJTISA

*BUTHUTT @nUT3UOD 3Fou od

e3ep
1ebaT1T SUTEIUOD 3IXII 309(qo

adi3 Ix93
308(qo 1eballl

IL

*3sIT3 PANUTT ST
uotaeaado-opnasd aol but
-uTe3uU0d aTnpow 3Byl AJTISA

-HUTHUTT SNUTIUOCD FOU od

*3Xa3

108lqo burieasuab-apodo Id33E
3x93 302fqo utr pPaxINdO0
uot3jeiado-opnasd ATquesse dDL

10119 dJL

aL

2113 303lqo
sjeasuebsr 10 ‘o113 300
-qo ue st 9113 3Ieylx AJTaaA

+hUTHUT] SNUTIUOD 30U Od

-paousanbas Araadoadut
a1e spaoossa 3xa3 30a(qo

aouanbas pioday

11

*paI193uUnod
~us sT uotlieasado-opnasd

IO purwWWoOd 9L 31039q
paxurl sT1 uotizeiado-opnasd
gdl y3tm 2Inpow aans a4

*hutyuI] SnuUT3IuUCDd 30U od

spaxajunosua sem (0#DIL
a1aym) uotjexado-opnasd
A{quesse I0 puswwod (9DL)
_dnozf epod FusTSURII ISATY
aya =2103j8q pessadoid 30U SeM
COﬂumummo|ovsmmm Afquasse oL

(gdL) uoT3TUTIaP
8poo 3U2TSURII ON

LN

-eaie auoc JOo sjudwaiinbax
Azousw asesidsp IO ‘pesn
axe seaie pasnun Aue 0§
ssanord putyurl sztuebiosy

-hUTHUTT 2nUTIUOD J0U OQg

("1-¢
21nhTg 988) "WWOD SPIJDX3
HOIH ‘"©°1 !8beiols NOWWOD

§93TIMId2A0 dpod weaboagd

MOTFIDA0 AIoWway

OW

uot3oy z03e1ad0

putucan

J0233 30 adL}

STUOWBUR
101139

sobessaW 10313 103Tpd abexull

- (3u0d) T-f @19el

AGOSB

3-26

a

‘weyl burousas
~-j21 a1039q sloquis bututrjyep

*ToquwiAs pautjspun ue

9anpacoid buryuil @zTuebioay sute3zucd Iojaweied pURWUIOD 1oquAs pautjispun sn m
- w
‘UiesIls TOT13 ”
i) 10 afosuod =2yl ybnoiya jus3sIxXauou peax 03 3Idwalay H
peisjua oweu 31T3F AJTIASA - weo13S m
*31 buisn 2103139 13 IO Ig 9yl o3 paubrsse :
2113 © @3eIdU3b 03 aans ag sT 91713 andutl pauTiapun 8113 pLauljspun an ;
« (Tenuew JI9TqUSSSY OIJeW
s pUBWWOD I1031Po —
sbeyutT ® UT 3T buTous 00L-dV¥a 00L/SO 243 29s)
: LT ’ 3x93 309(qo JO UOT3ITUTIOP
-x9391 @i103aq o113 30slqo : AR
- : ’ 2y3 031 WIOJUOD 30U S|P
o3eIsuabar 10 ‘2713 3098 - f
- -gqo ue ST 91TJ 3Byl AJTIBA WealI3s 1€ Sul ubnolui pesd
a Poeu . ejeq oWRU YO0Tq NOWWOD
*BUTHUTT SNUIIUOD FOU Og pauTispun ue 03 SDU3IIIY FOOTq NOWKWOD psutispupn on
i *a7qe3 Toquis
asbxey e sey 3eylz A3TATIOE
I03Tpe ebejxutii ® 23BIBUSH
10 !{sToquis Teuialixsa
; 03 S20U2193I31 PIOATOS2IUN
JO Isqunu Sy3 2ZTWIUTW O3 |
, ssaooad butyut] abuexaeay
m I0 !STOqWAS I3M33J osp -pozT1T3N ATINI ST
! *HUTHUTT BNUTIUCD JOU 0Q a1qes Toquds s,I103Tp2 9bEUTT MOTJIaA0 oTqel Toquis ol
w uc13oy I03nIadg ! putuesp 1013g 30 odAL DTUOWSBUW
M W 10113

sobessol X0I1x¥ I03TpY abeyut]

o

‘- (3u09) T-£ °Iqel

AGO8

3-27

APPENDIX A
LINK-700 LINK TEXT

Link text is the memory-image representation of a linked program, with
provisions for text identification. It is the interface between the linkage
editor, System 700 link text loaders, the 0S/700 online utility Load Activity
{LA) command, and other System 700 programs.

INTERNAL DATA FORMAT
ff” ‘ Link text comprises five types of binary records (blocks): the first word
of each contains the block type and block length. Maximum block length is 54
words, The blocks occur in the following order, except that data blocks and
transient code arcoup blocks can be intermixed,

1. Identification block (optional)

2. Transient code definition block (opticnal)

3. Data blocks

4. Transient code group blocks (optional)

5. End block

P
£

Identification Block -~ Block Type 2

The first word of an identification block contains a 2 in the high-order
byte as the block identifier, and the word count (n) in the low-order byte.
The next n-1 words contain text identification, packed two characters per word.

{(See Figure A-1.)

- Bit 1 16
Word
1 2 n
2 CHAR 1 CHAR 2
: : ‘ n WORDS
n CHAR 2n-3 CHAR 2n-2 . $

Figure A-1. 1Identification Block

Transient Code Definition Block - Block Type 4

The first word of a transient code definition block contains a 4 in the
high-order byte as a block identifier, and the word count (always 4) in the

A-1 AGOS8

lower byte. The second word contains the low-memory address of transient code
groups in the link text. The third word contains the high-memory address of
the transient code groups. The fourth word contains the highest transient code
group number. (See Figure A-2.)

i 8 9 16
Word Bit 1
1 4 4
TRANSIENT CODE LOW-MEMORY
2 ADDRESS
TRANSIENT CODE HIGH-MEMORY
3 ADDRESS
4 HIGHEST TRANSIENT CODE
GROUP NUMBER

Figure A-2, Transient Code Definition Block

Data Block - Block Type O

The first word of a data block contains a 0 in the high-order byte as the
block identifier, and the word count (n) in the lower-order byte. One or more
data groups foliow, formatted as shown below:

Word 1 - Data group origin

Word 2 - Bit 1 - Set if repeated constant
Bits 2-16 - Number of data words to be stored (j)

If bit 1 of word 2 is 1, the next word is stored in j consecutive locations,
starting at the group origin. 1If it is 0, the next j words in the group are
stored consecutively starting at the group origin. (See Figure A-3.)

Bit 1 8 9 16
Word - T ‘
1 0 n
2 ORIGIN
3 0 DATA COUNT j
4 DATA WORD 1
ol N
n WORDS
T ™
n-3 DATA WORD j
n-2 ORIGIN
n-1 1 REPEAT COUNT j
n REPEATED CONSTANT v

Figure A-3., Data Block

A-2 AGOS8

—

!
9
O cotmen

Memory gap tables are included in data blocks, along with data derived from
object text, and are indistinguishable from such data. When loaded into memory,
a gap table is 2n consecutive words, where the first n-1 pairs of words repre-
sent n-1 free-memory areas. The first word of each pair is the low-memory
address of the area; the second word is the high-memory address. The last two
words of the gap table contain the value '177777 and mark the end of the table.

Transient Code Group Block - Block Type 5

The first word of a transient code group block contains a 5 in the high-
order byte as a block identifier, and the word count (always 2) in the low-order
byte. The second word contains the number representing the transient code group
to which subsequent data belongs. Data preceding the first transient code group
block belongs to transient code group O. (See Figure A-4.) '

Word Bit 1 8 9 16
1 5 2
2 TRANSIENT CODE GROUP NUMBER

Figure A-4. Transient Code Group Block

End Block - Block Type 1

The first word of an end block contains a 1 in the high-order byte as the
black identifier, and the word count (always 2) in the low-order byte. The
second word contains the starting address of the program. (See Figure A-5.)

Bit 1 8 9 16

Word
1 1 2

START ADDRESS

ro

Figure A-5. End Block

A-3 AGOS8

APPENDIX B
SAMPLE PROGRAM AND MAP

Figures B-1 and B-2 illustrate, respectively, a sample program and the

resulting map.

& SAMPLE PROGNAM TO 1iLuSTRATE MAP

oot} o SAMPLE PROGRAM TO 1L LUSTRAYE MAP
0002 .

0003 .

0308 L1 RELOCATABLE CODF

€008 £xD FXTENDED MDL DESFCTORIZATION

ogue 1o OVRLAY (OVERD i OLFIME TRANSTENT CODF GRDUPS

o007 ENT PROGRM INTT PROGRAM START [N ADDRESS

poos ENT Uvhiay START OF OyERi AY AREA

0359 . f
0010 SLTR “46, 14 PRINARY DESFLYOR[ZATION AREA

ool [:119 o0 SKIP ABOUND BASE AREA

opi2 .

0013 00C2« N 1% BI%1S INGT sTx Pice SAVE ADDRESS Of TCH

adla Oanzs € 10 novnCE ALY TCu(CALL TRANSIENT CODE MANAGER INITTAI [2ER

0els 00o2s C NOLGLS (719 wice ADDRESS OF woRD fONYAINING ADORESS OF T(q

oole 0cadT 0 0nisie nac TCoTaL ADORESS OF Tampg FOR TRANSIENT CODF GROUPS

0017 Ceude £ 000Y0% DAL DVRLAY STARYT ADDRESS OF OVERLAY AREa

cele foony G 60)%ia Gac OVEND= FND ADDRESS OF OvERLAY Agtls

60le Docyz N0OLE2 REC 10 NUMBEB UF fRANSIFNT (DOt GROUPS

802¢ 00033 O 01 00206 anp TCmIER TCMi ERROR OCCURRED

anat .

£022 00f3w 0 02 01530 LDA =i L OAD TRANSIPNT CODE GROUP | |
0023 0p03s O 10 00000F CALL Tu &
00Ze O003s & 0O 80223 Ll TCmgRR TRANSTERT (NDE MANAGER ERRQR

©02% 00037 n 10 003105 g SUpRY} CALL SUBROUTINE 1IN TRANSIENMT CODE ROUP

ue s *

SIELY . TRANSTENT JODE GROUP

R TY -

oo any e QvRkLAY EQU -

BT} TG 1

LS DEGAE RN O preaty A SUBRT | OAC an

Q04a -

0043 0131y 0 01 00303 M. SLaATY RETURN TO CALLFR

0C%e 8r2ia BSO 4 DESECTORIZATION ARER ~ X
0087 - B
[t] 001217 OVEND st L]

0048 .

00%0 - TRANSIFNT COOL GROUP 3

0031 .

0os? ORG OvikLAY

0033 TCO

0% 00305 0 000000 A SUBRYZ DAC - ,
oose .

* SAMPLE PROGRAM TC 1 LUSTRATE MAP

0060 01317 =0 O} 0030% JmPe Uk KLTURN TO CALLER
0061 O1s{1 830 . NESECTORIZATION AREA

006z 1FP S-DVEND 1F FURTMER THAN PREVIOUS END OF OveRLAY aRgA
cce) 001513 OvEND SEY] UPDATE END GF OvrRLAY AREA

oota ENDC

(113} .

00&s RETURN TC wOCT

0067 .

ooss ORG OvEND

009 T 0

oot .

c07y L3 DATA AREA

0072 -

0073 O)8(n 0 go0pCe A Pice DAl ae aDDRESS NF T(m

007« C131s 00Q0GO TCGTAL BSZ 10 TG TABLE

007y ARBAY (OMM 10¢ COMMON ARRAY IN{TIAL;LZED T ZERC
00Ts ORG ANGAY

2077 OpoccC CoaOUC 852 ito

0078 AN

00Te Di13yc 00000} NG (YR

Y conogs OWEND 00 s n GyRy Ay Ol ADY Proy or1hie

WORYL oo SUBRTS uNEIue Tewne N0isgae TCMERE DUy

TMIER poeras
< OMMON
ARRAY 0001

0000 WARN (NG OR ERRON PLALS
DAY-T00 wLv, ¢ Tu-ihant

Figure B-1, Sample Program

B-1 AGOS8

$SA

ZLE
00

00
00
00
00

00

ZLE

ZLE

ZLE

ZLE

ZLE

ZLE

LE-700 REV. D

! OOIDNT:LINKED 700 DEMONSTRATION

! 00BO=TDEMO

74/10/10

1 00COMM="'4000

| O0OBI=QDEMO, LINK

! 00OBI=QTCM, LINK

{ OOADDR=OVRLAY

! OOBI=QTCMI, LINK

| OOMAPF,QUIT
LINKED 700 DEMONSTRATION

STATE

START
LOW
HIGH
ADDR
BASE
coMM
CLOW
CHIGH
CTCG
TCDL
TCDH

01024
01024
02657
01502
01006
03634
03634
03777
00000
01305
02514

DEFINED SYMBOLS

PROGRM
-OVRLAY
TCMI
TCM
TCMGL
TCMGH
TCGBUF
TCMSEG
ZALINK

BASE AREAS

-01011-01023

01024

01305
01306
02532
02641
02642
02645
02646
02647

02511-02511-02514 {00002]

02214-02214-02216

00001}

*01006-01011-01023

COMMON BLOCKS

ARRAY
END OF JOB

Figure B-2.

03634

Provides link text identi-
fication.

Assigns file to binary out-
put stream.

Sets COMMON address.
Links main program.

L,inks subroutine (Transient
Code Manager).

Sets link address to begin-
ning of program's overlay
area.

Links subroutine (Transient
Code Manager Initializer).

Obtains map; then terminates.,

Map Resulting From Sample Program

AGO8

Command

Address

BASE

object text
input stream

Assign
binary

link text
output stream

Assign
binary
BSD

Asgsign ASCII
command input stream

Identification with
copyright

COMMON address

CULL mode

Definition of symbol

Reverse condition
of command execution

End conditional
command execution

Enter extended
desectorization mode

APPENDIX C

SUMMARY OF LINKAGE EDITOR COMMANDS

Syntax
ADDR=num

BASE=numl<num2
or
BASE=numl
BI=file name
BO=file name

BSD=num

C1
or
Ci=file name

CIDNT

COMM=num

CULL

DEF : symbol=num

ELSE

ENDC

EXD

Descrigtion

Sets the linkage editor 1link
address.

Establishes a primary desectori-
zation area.

Assigns object text cinary input
stream to 0S/700 file.

Assigns link text binary output
stream to 05/700 file.

Generates a BSD block at current
location.

Assigns ASCII command input
stream to consocle or to 08/700
file.

Places character string and
Honeywell copyright in text
identification blocks.

Defines top of the FORTRAN
COMMON.

Enters CULL mode, in which a
symbol defined by a module or by
a DEF command is recorded in the
symbol table if it was pre-
viously referenced but not yet
defined.

Defines the numeric value (num)

of symbol.

Reverses effect of preceding IFZ
or IFN command; e.g., if command
execution was enabled, it
becomes inhibited,

Remocvaes condition imposed upon
command execution by preceding
IFZ or IFN command.

Enters extended desectorization
mode, which is used when the
program being linked will execute
using extended addressing mode.

AGO8

command

Finish
FORCE

Gap table

Gap base

Identification

Conditional command
execution

Initialize

Library mode

LINK

Leave extended

desectorization mode

Assign ASCII map
output stream

Modular origin

NCULL mode

Normal mode

Syntax
FIN

FORCE

GAPT
or
GAPT=num

GBASE
or
GBASE=num

IDNT:character string

{IFN

IFZ}:num

"INIT

LIB

LINK

LXD

MAP
or

MAPS
or

MAPF

MO
or
MO=file name

MORG=num

NCULL

NORM

Description

Completes link text generation
but docs not reinitialize.

Forces linking of the next
module read.

Produces a link text table of
memory gaps in the binary output
stream. ‘

Ignores yaps below current link
address or num when linking SECT
mode object text.

Places character string in text
identification block.

Enables execution ot subsequent
commands if num is not 0 (IFN) or
is 0 (IFz); if'condition is not
met, subsequent commands .re
ignored.

Completes link text generation
and reinitializes.

Enters LIB mode, which links a
module if certain conditions are
met. See "Library Mode Command
(LIB)" in Section I1I.

Initiates the reading and pro-
cessing of object text.

Enters normal desectorization
mode, which is used when the
program being linked will execute
using normal addressing

mode.

Produces a link map.

Assigns ASCII map output stream
to consocle or to 05/700 file.

Advances link address to next
location divisible by num.

Enters NCULL mode, in which a
symbol defined by a module or by
a DEF command is recorded in the
symbol table if it was not pre-
viously defined in the current
transient code group.

Enters NORM mode, in which
modules are read from the binary
input stream until an end of Iile
is encountered.

AGO8B

Command

Assign binary object
text output strcam

QUIT

SK1P

STEP mode

Symbol table

Establish transient
code group

TOTAL mode

Syntax

00=file name

QUIT

SKIP
or
SKIP=num

STEP

SYMT

TCG=num

TOTAL

(98]

Description

Assigns binary object text output
stream to 0S/700 file.

Terminates linkage editor
activity.

Reads and ignorxes one or num
modules.

Enters STEP mode,in which a LINK
command causes object text to be
read until a module is linked or
an end of file is encountered.

Transfers the symbol table as a
module on the object text cutput
stream.
Establishes the next modules as
a transient ccde group.

Enters TOTAL mod.., which links
all modules read.

AGOS

INDEX

AL DR COMMANDS (CUNT)
ALY RESS COaMmanD (ADDR) w 2=34 3a3 LEAVE EXTENOFD DFSFCTIRIZATILS MOLE
COMMAND (LXL) s 234 3=16
ADDRL SO LIERARY 10Dz COMMAND (L1BYs 229 3«13
AGLRESS COMYAND (ADDR) g =3 3«3 LINK COMMANMS, 2=l 3wlit
LOLAOMN ADDREDLS CUMHAMD (LOME) & 2«3y 3=6 LINKAGE EDITOR COMMANDS, 3]
. LINKAGE EDITCR CC¥MAMD. SETe 3-3
3ASF . LINKIMG PRCLESS TERMINATION
BaSE COMILAND. 2=34 3=b COCMMARDS,y, 2m6
GAl BASF COWi AND (GBRASE) s 2=3e 3-1] HMAF COMMAND, 2=4¢ 3=15
MOLULAR GRIGIN COMMAND
8LOCK {(MCRG) s 2-34 3=1R
BLOCk STORAGE FOW DESECTCERIZATION MCLULAR PLALEMENT COMMAMDS, 2-3
COMMAMD (350L) s 2«3, 3=5 MCLULAR SELeCTION COMMALLS, 2«2
DA1A BLOCK « BLOCK TYPE 04 A=2 MCULL MOLE CUMMAND, 2=64 3=-lYy
ENE BLOCK = {(LCCK TYPE 1y A=3 MOKMAL MODE COMMANDG (NOKM) 4 3~19
TCeNTIFICATIL M PLOCK = oL0CK TYPE OFJECT TEXT IN'UT COMMENLS, c=~1
2y A=} OUIT COMMAND Y 2=60 3«19
TRANSTIENT Cu b DeFINTTION ALOCK - . Sk1F COMMANDs 2em)y 3«20
BLOCK TYPE wy Ae} SFECIAL LINK TEXT COMMANLS, 2«4
TRANSIFMT Cout GHOUF BLOCK » 3L0OCK STER MODE CUNRMAND, 420
IYPE By Aa3 STREAM ASST O MENT COMMAKLS, Z-14 321
SUMMARY UF LINKAGE EDITOK ;
3sp ; : CCMMANDS,y Cwl
RLCCK STURAGL FOF DESECTORIZATION SYMBOL DEFINITIOM COMMANUSY 2e4
COMMAND (B350) e 2«34 35 SYMBOL TABLE FILF GEMERATION
COMMAND (SYrT)e 2«4y 323
CIDNY TOTAL MCDE CUMMALD, 2m2y 323
ICENTIFICATL N wITH ZORPYRIGHT
CUMMAND (J1.uNT) s 2=64 3=6 COMMUN
ALLOCATION DOF THE FOPTRAN
COMM COMMON, 1-4C
CCHMON ApDHE .S COMMAND (COMM) s 2«3, 3=6 CCMMON ADLDRESS COMMAMD
(COMM)Y s 2+3¢ 3t
COMMALDS)
ALLKESS COMMLND (ADDR) y 2=3,y 33 CONDITIONAL
BASE COMMAMD, 2=3, 34 COMDITIONAL cOMMAND EXECUTION
BLUCK STORAg FOX DESECIORIZATION CUMMAND (IFn, IFZ2), 2-5¢ 3=12
COMMALE (135.) s 2«34 3=5
CLl MON AUDRE.LS COMMAND (COMMYy 2e3, 36 CULL
COLLITIONAL ¢ OMMAND FXECUTIUM CULL MODE CO+MANLy 2aby 3=7
CLMMANDS (Ji Ny IFZ)e 2«54 3=12
CULL MOLE Cui hANL, 2+4y 3a7 DATA
DELINITIOM JF SYMROL COMMAMD DATA BLOCK - BLOCK TYPE Ue A=g
(LEF)y 2«44 3=7 INTERNAL DATA FORMAT, Ael
DELECTORIZATION COMMANDS, 2=-3
FMTER EXTINO, D DESECTORIZATIGN MODE JDEF
CUMMAND (EX.)y Z=34 3-8 DEFINITIUN OF SYMBOL COMMAND
FSTABLISH [R~NSTFMT CODE GROULP (DEF)y 2oty 3=7
CUMMAND (Tl) e 254 3-23
FI.:I8H Covvin U (FIN), 2=-6¢ 3-8 DFFINITION
FURCE MALE (. MMAND, 222, 3-10 DFEFINITILN oF SYMAAL CDwi AN
FUMCTIONAL o-0uPS OF LINKAGE EDITOR (CLFYy 3=7
CumMANDS,y ¢=1 DEFINTITIUN ~Ur TFRYS, 1.3
GAF BASE COv AND ((GBASE) s 2=34 3el1l SYRBOL DEFIVITION COMMALLSy =4
GA+ TABLE o ERATION COMMAND
(CAPT) ¢ 2«44 3-1C DFSFCTOURTIZATID
TCENTIFICATIUN CowsanD BLOCK STURALD FOW DESCCTURIZATION
(IDNT) s 2«44 3=-11 COMSAND (Linu)y 225
TCENTIFICAT N WITH TOPYRIGHT DESECTORIZATION, 1w
CCAMARD (T1unNT) e 249 3=6 DESFCTORTZA 1 IGN AREAS, lab
INITIALTZE i MMAI D (INIT)y 2=6y 3=-13 DESECTORIZATION (SMMANCS, 2=3
DESECTORIZATIUN #02F%, 1-6

i-1 AGOB

I'NDEX

FSFCTORIZATION (CONT)
DESECTOR]I2A1iON UMDER SECT MUDE
LINKING,y 1-10
FFFECT OF TaaNSIZNT TOOE GROLFS ON
DESECTORIZATION, lall
eNTER EXTENCC DfSECTD?l¢ATXU\ MODE
COMMAND (Ex_)e 2=3 3-8
LEAVE EXTEN...D DrsprCTIRICATIUN HODE
COMMAME (La)o 2=3, 3=l

X

1]
END BLOCK = . LJ3Ck TYPE 1+ A=3

"RROR
ERROK MESSALrDe 324

e X0
ENTER EXTENUSD DFSECTORIZATIUN MOLE
COMMAND (EXt)) e Z=3 3-8

Ex TENUED ,
ENTER EXTENCED DFSECTORIZATION MODE
COMMAND {EXJ)y 2~34 3=b
LEAVE EXTENC.D DFSFCTORIZATION wODE
COMMAND (LA.)y 2=3y 3=l6

FIN
FINISH CUMVA D (FIN)y 2=ts 3=0

FINISH
FINISH CuM#e, D (FI) s 2-60 3-8

FORCE
FORCF MQUE LJMMA"IDQ 2-2! 3"!0

FORMAT
INTERNAL DATEL FORMAT, A-l

FORTRAN .
ALLOCATIUN OF THE FORTRAN
COMION,y 1wl

AP
GAP RASE COw AND (GBASE)s 2=3s 3-11
GAP TABLE OEERATION COMMAND
{GAPT)y 2~u. 3=-10

SAPT .
GAP TABLE GE..ERATION COMMAND
(GAPT) s 2-G+ 3-10

SASE
GAF BASE COM+AND (GBASE}s 2=3s 3~l1

ICENTIFICATION
IDENTIFICATIULN BLOCK - i&LOCK TypC
2¢ A=l
IDENTIFICATICN COMMAND
{IDNT) s 2-4. 3=11
IDENTIFICATION WITH COPYRIGHT
COMMAND (CINNT), 2-49 3-6

JUNT
[DENTIFICAT L N COMMEND
(IDNT) s 2~4, 3=11

IFNs 1FZ
CONDITIONAL . OMMAMD FXECUTION

COMMAND (1F. s TFZ) s 254 3=12

INIT .
INITIALICE CoAMALD (INIT) s 2=60 3-13

I~ITIALIZATION
LINKAGE LDI10R IRITIALIZATION, 3-1

INITIALIZE
INITIALIZE LiMMALD {INIT)s 2=bs 3-13

INPUT
OBJUECT TEXT iMPUT COMMANDS,. 2-1

LFAVE
LEAVE EXTEND:D DF5FCTDR1¢ATION MODE
. CUMMAND (Lau)e 2-3¢ 3=16

.18
LIBRARY +0D& COMMAND (LIvds 2-2 3«13

LIBRARY
LIBRARY MODE COMrAND (LIbt)e 2-29 313

L INK
LINK COMMAND, 2-1, 3-16
LINK MAP COmANDS, 2«4
LINK-700 LINK TEXT, A=l
SANPLE LINK ~AP (FIG)s 3«17
SPECIAL LINK TEXT COMMANL S, 2-4

LINKAGE EDITCR
FUNCTIONAL ux0OUPS OF LINKAGE
EDITORS COM~ANDS, 2-1
LINKAGE EDIT.R COMMAND 5ET, 3-3
LINKAGE EDIT R CCMYMANDS,y 3-1
LINKAGE eDITUR FFROR MESSAGES, 3-24
LINKAGE ©DI171.R FUNCTIONS, l=1
LINKAGE EDIT..R IMITIAL
CCNDITIONS, 3=2
LINKAGE EDIT.R T 1TIALLZATIGN, 3=1
LINKAGE £DIT R TASKkS, le&
SUNMMARY (F _inKAGF FCITUK
COMMAND YL,y -1

LINKING

DESECTOR[ZAT:ON UNDFR SECT MGDE
LINKING,y 1=-,0

EFFECT OF TR-WS1EW CODE GROUPS ON
EXTEPNAL L. KING, 1=l

EFFECT OF TR~-NSTENT CODE GROUPS ON
SECT MODE L_INKING, 1=12

LINKIMNG FROC. 85 TERMINATION
CUMMANDS,y c<b

SECT MODE LI KING, 17

AGOS8

I

INDEX

CAD
LEAVE EXTENG-D DrsrCTIRICATION MOULE
COUMMAND (LXx)y 234 3<14

AaP
AR COMMAND, 2«44 3=lb
SAFPLE LINK AF (FIGle 3=17
BAMPLE PROGR..YM A0 MAP. Ll

v SSAGES
FRAOK MESSAL- Se 3-24

SCDE

CULL MODE €O MANiIy 2eby 3=T7
DELECTORIZATLIOMN MIDESY le6
IESECTORIZAT:ON UNDER SLCLT MODE
LINCINGy 1=i

FFFCCT OF TRANSIENT CO0t GROUPS ON
SECT MOLFE _'NKING, 1=lc

ENTEFR EXTEND: D DFSFCTORIZATION MOUE
COMBAND (Ex.)y 2wy 3wt

FCRCE MOUE { MYALD, 2=24 3«10

LEAVE EXTENL D DFSECTORIZATICN MODE
COMMAND (LA)y 2«3, 3<14

LIBRARY 20Dt CoMtAMND (LIt) e 2miy 3=l13
HCLLL MOUFE LiMEAT D, 2.4y 3=]9
NCEMAL MODE < IOMMAND (NIJRM)y 2ely 3=19
SECT MODE o1 KING,y 1=7

STEP MODE LU MAND, 2l, 3=20
TCTAL MOLE L. ™M“AiD, 2«24 3=23

YODUL AR
MCLULAR CRiIG VN CompanDd
{MORG)y 2~5, 3-1i8

MODULE
NMOLU..E PLACE ENLT COMMANLS, 2-3
MODULE SELELITON AND
FLATEMENT, 1-6
MOLULE SELECTION COMMANDS, 22
RELOTZATION J7 MODULES, 1-10
SECT MODE L1..KIMG OF MODULES, 1.7

MCROG
MOLU. AR ORIGIN COMMAND
(MIRG) s 2=3. 318

NcuLL
NCULL MODE COMMANDs 2=44 3*-]19

NORM
NORM COMMANDy 2=1+ 3-19

NORMAL
NORMAL MODE COMMAND (NORM)s 2=1s 3=14

ORJFCT “
ABUECT TEXT 18PuT COMMANLS, 2-1

JVERLAYS
ESTARLISIHMENT GF DVFRLAYS, 111

PROGKAM _
J5/7C0 PrOGx- M DFVFLOPMERNT,y 141
SAMFLE PrIG< VM ALD MBP, oel

wiT
GUIT COMMAND, 2«t4 3=lG

RFFERENCES
RESCLUTION UF EXTERNAL
REFERENCES, l-1C

RFLOCATION
RELOCATION OF MOLJLFSy 1-10

SECT MODE LINK1NG
DESECTORIZATION UNDER SE(T MUCE
LINKINGy 110
EFFECT OF TRANSIENT CODE GHOLPL ON
SECT MCLE LINKIKG, l=1l¢
SECT MODE LI KINCy 1«7

SK1IP
SKIP COMMAMNLs 2«1, 3«20

STEP

STRFAM
© STREAM ASSI L MENT COMMANLS, 2e1y 3e2l

SYMBOL
DEFINITION O SYMRNL COMMAND
(CEF) s 3=7
SYrBOL DEFINLITION COMMANLS, 2.4
SYMBBOL TABLE FILF GEMERATION
CUMMAND (S5Y T}, 2=b44 3-23

SYMT
SYROL TABLE FILE GFMERATION
CUMMAND (Sv. T}y 2abs 3-c3

TASKS
LINKAGE EDITUR TASKS, l-4

TCG
ESTABLISH TRANSIENT CODE GRCUP
COMMAND (TLG) sy 2«54 3-¢3

TERMINATION
LINKING PRLLESS TERMINATINN
COMMANDS,y 2-6

TOTAL
TCTAL MCUE COMMAND, 2+2, 3-23

TRAMSTENT

FEFECT COr TReNSTENT 2006 GrOUPS Oi
ODLSFCTUHIZATION. 1211

FREFECT OF TANSIFENT C0ODE GROULPS ON
EATERNAL LI <ING, 1al?

FFFECT OF TRANSIHENT CODy GRUGULWPS 0N
SLCT MOLL 1K1l 5y 1els

ESTARBLISH TR.OSTENT 720y LROGUP
COMMAND (Tlu)y ¢=5, 3=03

TRANSIENT Culk DIFINITION BLUIK
ELOCK TYPE 4y Aal

TRANSIENT ColE GY3UP BLLIK = BLICK
TYPE 59 0-3

TRAMSIENT CDiLF GROUP COMMANL . 2-5

AGOB

Honeywell Bull

Technical Publications Remarks Form* (please print)

Title:

SYSTEM 700 08/700
LINK-~700 LINKAGE EDITOR

Order:
61A,2-AG08,Rev; 1

Dated:

DECEMBER 1974

Errors in publication:

Suggestions for improvement to publication:

from : Name
Company
Title
Address

* Your comments will be promptly investigated by appropriate technical personnel, action will be taken as required, and you will receive

a written reply. If you do not require a written reply, please check here : D

R R R Tt T C TP

EETIE Y ST N

Please hand this technical publication remark form
~ to your Honeywell Bull representative,

or mail to :

Honeywell Bull

Marketing Communications
Documaentation/Publications

94, avenue Gambetta
75960 PARIS CEDEX 20 - FRANCE

12

Honeywell Bull

HONEYWELL INFORMATION SYSTEMS

Ref. : 61 A2-AGO8, Rev. 1

