|
] / \
)
l

[]

<R_<

Honeywell

SYSTEM 700

Y

FORTRAN MATH LIBRARY

0S/700

SOFTWARE

Honeywell FORTRAN MATH LIBRARY

SYSTEM 700 0S/700

SUBJECT:

Conventions, Loading Information, Library Use, Programming Information, Descrip-
tion of Intrinsic and External Functions and Subroutines and of Compiler Support Sub-
routines, and Error Messages.

DATE:

May 1972

ORDER NUMBER:
AGl6, Rev. O

DOCUMENT NUMBER:
701300726,02A

PREFACE

The Fortran Math Library consists of Fortran-callable subroutines. Section I intro-
duces the library. Section II contains information for a programmer using the various
subroutines. Section III shows how to call them from a DAP/700 program and gives examples.
Section IV describes the standard ANSI and ISA Fortran subroutines in the library, and Sec-
tion V describes the compiler support subroutines. There are five appendices, included to

facilitate access to the library.

Additional information may be obtained from the following manuals:

DAP/700 Macro Assembler, Order Number AG17.
0OS/700 Linkage Editor, Order Number AGOS8.

System 700 Programmers' Reference Manual, Order Number AC72.

Fortran 700, Order Number AH99. (This manual contains a descrip-
tion of the run-time library.)

The Fortran Math Library consists of coded programs designed to extend
the power of System 700 in the area of program preparation and mainten-
ance. They are supported by comprehensive documentation and training;
periodic program maintenance and, where feasible, improvements are
furnished for the current version of the programs, provided they are not
modified by the user.

21972, Honeywell Information Systems Inc. ' File No.: 1923

AGlé6

(4

Section I

Section II

Section III

Section IV

CONTENTS

Introduction ... vuvee i nenene ittt i e e
Subroutine Descriptionsovveeroeeiennn, e ..
AppendiCes «.veeieerrit et P
Symbols Chee e e e e e e e
Naming Conventions ceeneen Crr et e .
Loading Information e et e

Use of Fortran Math Library et oo
Data Types and Representations oo
Integerccvveeiven et e e

2 P

CompleX . ovttir et i e i e e e e e
Logicalccvviiieiieenenn. ceeran e e .
Normalization ... ieieeneenneroeneneonennes e
Register Use00000. e te s e e ceeeennes ..
Accumulators ...oveierieiieeaean ceseeenr et eanen e
Integer Accumulator et ee e Ceeeeea e
Real Accumulator ceenn e st e e
Complex (pseudo) Accumulator .e...oveeriiiverenass,
Double -Precision (pseudo) Accumulatoro...
Results eoveveenneneensos [P Crie st P

DAP/700 Programming Information ceeerreaaa ceveoaas
Library Calls from DAP/700 ..veveertiunnnneenn c e
Examples of DAP/700 Calls to Library «.coevveeee... ceees

Intrinsic and External Functions and Subroutines
ABS Lttt ittt ittt e st ceeeceeseananes
AIMAG ..t ititrresseanssaesanannas e
AINT . .iiveeennnensnnns cet e e eesecseseresasanses
ALOG it erenneestnconesnnns et se s
ALOGX ittt et oststoeasoesoneaeaeseeenoeensnennssns
ALOGIO ..ivivennneeneennenn fe et ettt
AMAXO .oiviivereecoeennons ceeeen feree sttt aaeenne .
AMAXI] ... iviieennn. ettt e et Ce ettt
AMINO e s e e et e s e eens ceee e eae e ceea e
AMINL ,,......... e e eeseseeseens o et ta e
AMOD ,,... cereeesan N ettt
ATAN |, . iiiiiiiiennnnn., ettt e,
ATANZ | ... iiitiirennnneenns
CABS ,........... e ete e .

.....................

iii

oY N
[B |

[SSIN ST SR (VI NI V)
LI R R T B |
W W WwWwWwwWwWwWwwWwiNN N — o -

(A2 SV oSN AT U OV
L I T R A |

o S S S w w w
] 1 1 1)]]
[\ I p—

'S
|
O 00OV bW IN —

Section IV (cont)

Section V

CONTENTS (cont)

DATAN .. e 4-27
DATANZ
DBLE e e e et et 4-29

DLOGIO vttt ittt ittt it i e eeen e, 4-36
DMAXIiivviiiinnnnnn, N e i e 4-37
DMINI
DMOD
DSIGN
DSIN

IDINT

IFIX 4-51

ISTORE e e e e 4-57
0 ... 4-58
IXOR tivvvinrnnnnnnn. et e .. 4-59
LOC tvvviininnnnnnn. e e, 4-60
MAXOD o iittiienenninneennennanennenns et
O S ceeee. 4-62
MINO'v'ivinrnnennnnnn, ettt ceveee. 4-63
MINLI ,.,....... ettt e ee et ceee.. 4-64
MOD ,,........... et eareaas
NOT e ettt ettt cereeee. 4-66
OVERFL
SIGN
SIN
SLITE et ces e
O 4-71
SQRT
SQRTX ..
SSWTCH . e
TANH ., . 4-75

Compiler Support Subroutines ,,,........... e . 5-1
ABZL e veriee.. 5-2
A2 5-3
AB2ZX e e e 5-4
AB5L i teeeesnenseenesnasas 5-5
A$52 ..., i iereriieeie e ceriieiiee... 5-6

iv AGlé6

Section V (cont)

CONTENTS (cont)

AB55 4ttt ettt et e e aniaeeeaas 52T

)Y S B veeeie.. 5-8

I Y Ceteiiiiee.. 529

N S P - 8 1o
AS66X v v vennenneenatanetnetettateaitenteitenteneeaie. 5.12
)N -3 T 5-13
ACT 4 ttevennueeeennseeaaanneeeeoesseeeanissennnseeanns 5-14
ARGS +vvvrnvrrnnnneennns e, e, ... 5-15
812 v e eveneeennnseeeennaeesesnssosesnnesennensnnnens 5-16
815 v eeennnosennnnsseennneeseeanseesansseannsaeeanaas 5217
CB16 e vvnnnnnerneseeseeeseenenesssesseeseesnnnaseseeas 5-18
C21 o eeeeieunerennsaeesaennessaenssesansasesnnseeanas 5219
C$25 vvernnnnns e - 1
CH26 v evenrnrernnnneeennnnens e 5-21
C$51 +.uun. e e e 5.22
C$52 vvvunnnnn eeeann e e 5.23
oF: 1% AP e 5.24
C$62 veverrrrnnnnnneennns e e . 5-25
(of:1:) E e e e 5-26

.....................................

Section V (cont)

Appendix A

Appendix B
Appendix C
Appendix D
Appendix E

Figure 2-1,
Figure 2-2,

CONTENTS (cont)

L$66viiivinnnnnnn Ceeee e et veeess 5265
D .3 0 ettt et - 1 Y 3
DY 3 . Ce e e e 5-67
.. .37 eee. 5-68
M$22 vevevnnnnnnnnn. e, e vereeeee. 5-.69
M$22X covvnennnnn. e e e ceeeie.. 5-70
MSESL toviiii i e ceeceen e Ce ettt e e oo 527l
MS52 tveeenrnnnnennnnnns P e ee 5272
M55 tivviiienerinnnenenes ettt e e e ceeees 5273
.,] ceeeees «e. 5274
ME62 toviintntt ittt -
B] 5-76
N$22viiivinernnnnns et eeens C et s ettt veee 5277
NS33 tiiiiinrieernnnennnnnns e s e s ies et ec et e aan e 5-78
N$55 tivereerererenenrennnnns e e er et 5-79
NBOb ittt ittt it ettt it i e e ..s.. 5-80
RS$EQ...... e e PN e et eese. 5281
R$GE...... e e e 5.82
R$GT ovovvivnnnnnnnnn e e 5-83
R$LE ...oovvvvennn. ceree e s e e st ese e e e saen s ue 5-84
RELT . iiiee it iinnnn tee st esernans f et et e 5-85
RENE ¢ oiviviiniiiennnnns e e e e s e st e s e et 5-86
S$2] ceieeiietieiansrtssssesescssseccsassscsssacssssse 5.87
SP22 ceeecorecscsesessssesesessssessesasenssssessscess 5.88
S851 teeeierecitcocescrcotserttcceresscscsasssnsssscscs 5.89
SP52 cireresseenercrctnsctcsnttetaasccsocsasasansssssss 5.90
S$55 ceeeecerasonnescresietttessacstosesasasscscscnses 5.91
o1 P S

o L P - X
5866 ittt ittt ctsiettsessbsessaassesess 5-94
SIZ$ vt et recosesans e 5-95
SNGL Ceeeereeaen St et eer et e e 5-96

Tape Contents «..vuiiiieeenennneneeenenneennenenennnns o A-l
Magnetic Tape 70185015000A (Library Sources) eeve. A-l
Paper Tape 70185012000A (FTNLBI1) B)
Paper Tape 70185013000A (FTNLB2S) ..o ennnnnnns A-4
Paper Tape 70185014000A (FTNLB2H) for High-Speed

Arithmetic Optioniviiiiiniiinnnnrieennnnnenns A-b6

Mathematical Routineso0v0uvun.. C ettt .. B-1
Subroutine FUnCtionsceviunernnnneeeeneneenenens vee. C-1
Library Indexiiiiiinienenneeennennnneneeeeneenenennns D-1

Error Messages N E-1

ILLUSTRATIONS

Formatof Integer0iituiiiininneninnnnnn. 2-1
Format of Real and Double-Precision Numbers 2-2

vi AGl6

b

4

SECTION 1
INTRODUCTION

The Fortran Math Library consists of an extensive assortment of subroutines to aid
the programmer in performing mathematical and trigonometric operations and functions,
conversions between data types, bit string operations, logical relations, and other functions.
The math routines included are for single-(real) and double -precision, complex, integer,

and logical calculations.

This library may be loaded in either normal or extended mode and will run in the same

mode.

SUBROUTINE DESCRIPTIONS

The descriptions, in Sections IV and V, of the Fortran external and intrinsic functions
and the compiler support subroutines give the name of the subroutine, its purpose, the
DAP/700 calling sequence, the Fortran calling sequence (where appropriate), the method
used to compute the result, the data types of the arguments and the result (where applicable), f
error messages generated by the subroutine, if any, and ot;her routines used by the subroutines,

if any.

APPENDICES

There are five appendices to this manual:

e APPENDIX A lists the contents of the library tapes. There are three
paper tapes and one magnetic tape. The first tape listed is the source
magnetic tape, containing the routines on paper tape 1 and the two ver-
sions of paper tape 2, in source rather than in object form. Paper
tape 1, FTNLBI1, contains only those subroutines which use complex
and/or double-precision variables. The first version of paper tape 2,
contains the remaining subroutines for systems equipped with the High-
Speed Arithmetic Option. The second version of paper tape 2, FTNLB2S,
contains the subroutines for those systems without the hardware option.

e APPENDIX B lists the math routines by argument type.

e APPENDIX C lists the library subroutines by function.

1 . - L .
The list of ""Other Routines Used' is given in the order in which they are called. If a routine
is called more than once, it is listed only once, the first time it is called.

1-1 ’ AGl6

o APPENDIX D is an alphabetical list of all the subroutines with their
entry points, approximate storage required, subroutines referenced
and the number of times referenced, the library tape on which they are

located, and the page in this manual on which they are described.

e APPENDIX E lists the error messages produced by the subroutines

and the interpretation of these messages.

SYMBOLS

The following symbols and letters are used in many of the subroutine descriptions:

% multiplication

division

~

complex
double -precision
integer

logical

W e~ o0

real

NAMING CONVENTIONS

raised to the exponential power of n

The intrinsic and external functions are named according to the American National

Standards Institute (ANSI) or the Instrument Society of America (ISA) naming rules.

The compiler support subroutines are named, for the most part, according to the

following naming convention: The first letter of the name denotes the operation to be per-

formed (see the list below). It is followed by a dollar sign having no significance and then

by two numbers. The first number (see the list below) represents the operand initially

in the accumulator (except in load operations) and the second number represents the second

operand or the type of result. If there is a High-Speed Arithmetic Option version of these

subroutines, an X is appended to the name.

Operation

A - Add

C - Convert

D - Divide

E - Exponential
H - Hold (store)

L - Load

M - Multiply
N - Negate

S - Subtract

Z - Zero (clear)

Argument Type

1
2
3
5
6
8

Integer

- Real

- Logical

- Complex

- Double-precision

- Double -precision exponent

AGl6

-

EY

b

Examples
A$22 - add two real numbers

D$52 - divide a complex number bf a real number

E$61 - calculate the value of a double-precision number
to an integer power

M$22X - multiply two real numbers, using the High-Speed
Arithmetic Option

LOADING INFORMATION

There are two sets of library subroutines, one for installation with the High-Speed
Arithmetic Option and one for those systems without this hardware option. Each set is
contained on two reels of paper tape. Customers who purchase the library in source form

(on magnetic tape) receive both sets of library subroutines.

The organization of the library is modular, thus making it possible to load only
those routines which will be used. This concept of modularity extends to the paper tape.

If complex or double-precision variables are not used, only the second of the two paper

tapes is needed.

Each reel has been assembled via DAP/700 and should be loaded by use of the Linkage

Editor program. Reel one (FTNLBI1) must be loaded befpre reel two (either FTNLB2S or
FTNLB2H).

1-3 AGlo

SECTION II
USE OF FORTRAN MATH LIBRARY

DATA TYPES AND REPRESENTA TIONS

The representation of a negative number in any of the following formats (excluding logical)
is the TWOs complement of the equivalent positive number. The complement is taken for the
entire representation, including all subfields. The TWOs complement is taken by reversing all
bits in the representation (ONEs complement) and adding one toc the low-order position, propa-

gating carries as required,

Integer

This is a 16-bit (single-precision only) word with an implied decimal point after bit 16;

bit 1 is a sign bit (see Figure 2-1), An integer value may range from -32, 768 to 32,7617,

10000051
1177773

0 000 000 000 000 101
1111111 111111011

Example: +5
-5

n
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l_ bovae boa a1 i L Wi

\—SIGN BIT

Figure 2-1. Format of Integer

Real

This is a 32-bit word in the format shown in Figure 2.2, Bit 1 is the sign bit (0 for
positive, 1 for negative), Bits 2-9 contain a binary number (N) with a maximﬁm decimal value
of 255 (377 octal) representing the 8-bit characteristic. This number is ''biased" by 128 (200
octal). The remaining 23 bits represent a binary fraction (F) with a value less than 1. The
value represented is F*2%%(N-128). A number is considered ''normalized' when the fraction
F is at least 1/2 (i, e., the leading bit is set for a positive number). Within this representation
the largest representable number in normalized form is just under 2%%127, or approximately
10#%(38.5). The smallest number is 2*%(-129), or approximately 10%%(-38,5), The 23 magni -

tude bits give a precision of one part in 2%%23, or approximately 6.9 digits of accuracy. Zero

The apostrophe before a number indicates octal code,

2-1 AGl6

is shown by all zeros in these 23 bits.

reference real single-precision numbers.)

0 100
1011

Example: +5,
-5,

Double-Precision

000 111 010 000, O 000 000 000 000 000
111 000 110 000, O 000 000 000 000 000

'040720, 0
'137060, O

(Throughout this manual the word ''real' is used to

This three-word format is identical to the real number format with the exception of an

additional 16 magnifude bits (see Figure 2-2), The 39 magnitude bits give a precision of one

part in 2%%39, or approximately 11,7 digits of accuracy. This data type should not be confused

with hardware double-precision,

Complex

This is represented by two real number pairs, each having the format of a real number

(see Figure 2‘-2). A real number takes two words of storage; the complex format requires

four words, The first two words represent the real portion of the complex number, and the

last two words represent the

Logical

imaginary portion.

A logical value is shown as a word of all zeros for false and a value of one for true. In

logical operations, any nonzero value is interpreted as true,

value changes it from 0 to 1 or 1 to 0.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIRST WORD: l ! l ‘ \ l . '
(REAL AND L L N | 1o I Lo L
DOUBLE- ~" ? ~
PRECISION) CHARACTERISTIC MOST SIGNIFICANT
BITS OF THE FRACTION
(EXCESS - 128 NOTATION) L7
SIGN BIT POSITION OF THE BINARY

POINT

2 3 4 5 6 7 8 9 10 11 1213 14 15 16

SECOND WORD:

L oo b e by oo b by

(REAL AND

S

DOUBLE-
PRECISION)

NEXT MOST SIGNIFICANT 16 BITS OF THE FRACTION

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

THIRD WORD:

Lo v b by o by oy by

(USED FOR
DOUBLE- ~ N —
PRECISIONONLY)
LEAST SIGNIFICANT 16 BITS OF THE FRACTION
IR
Figure 2-2. Format of Real and Double-Precision Numbers
2-2

The complement of a logical

e

4

NORMALIZATION

A real, double-precision, or complex number is defined as normalized when the fractional
part has a value between 1/2 and 1. For instance, 3/8 x 23 and 3/4 x 22 both have the same

value, but the latter is the normalized form.

REGISTER USE

All regiéters are presumed to be available to the subroutine library. and the user is
cautioned not to expect any of them to be preserved, whether or not the arguments or results
are stored in them. That is, any registers not specifically described as containing a particular
result upon exit from the subroutine must be considered as having become undefined by the

execution of the subroutine.

ACCUMULATORS

Integer Accumulator

The A-register is used in all integer operations,

Real Accumulator

The A- and B-registers are used in all real operations.

Complex (pseudo) Accumulator

This four-word area in memory (AC1-AC4) is provided by the library to be used in all
complex operations. The real portion of the complex number is stored in locations AC1 and

ACZ; the imaginary portion is stored in locations AC3 and AC4.

Double-Precision (pseudo) Accumulator

This three-word area in memory (AC1-AC3) is provided by the library to be used in all

double-precision operations.

RESULTS

Results are stored according to their data types. Complex numbers are found in the
complex accumulator upon exit from any of the compiler support subroutines; double-precision
numbers are found in the double-precision accumulator; real numbers are found in the A- and

B-registers; and integer and logical values are found in the A-register.

2-3 AGl6

SECTION III
DAP/700 PROGRAMMING INFORMATION

LIBRARY CALLS FROM DAP/700

The DAP/700 calling sequences for entry into the subroutines are shown in the descrip-
tions in Sections IV and V. When the Fortran compiler encounters either a function reference
or a call to a subroutine, the following steps are performed:

1. A call to the function or subroutine is generated.

2, The address of each argument is determined and saved, in the order in
which it is retrieved. In the case of expressions, this address is the
location containing the current value of the expression,

3, If there is more then one argument, the final address is followed by a
word of zeros to serve as an argument list terminator,

The code generated by a subprogram definition written in Fortran includes a call to the
special subroutine F$AT (Argument Transfer, found in the Run-Time Library). This call
immediately follows the entry point and in turn is followed by a word containing a count of the "
number of arguments as defined in the definition statement, followed by that number of words.
The F$AT subroutine fills in those words with the argument addresses (from the call to the
subprogram) and sets the return to the word following the argument terminator word (zeros).
All levels of indirect addressing are removed in passing these addresses. In the case of a
single argument, the terminator word is eliminated, the argument to F$AT shows a single

argument, and the search for the terminator is not performed.

Null arguments may be included in a calling sequence by use of DAC* 0 as the address
in the call. Subroutines serviced by F$AT find the address DAC*0 placed in the list of ad-
dresses and therefore know that the parameter was null. It is equally effective to use a
DAC#*PTR, where PTR is a DAC*0. This permits a dummy argument to be null, i.e.,, an

argument passed through an intermediate subroutine call,

The DAP/700 programmer can generate his own code, performing the same functions as

the F$AT subroutine.

Some of the Fortran Math Library subroutines have additional arguments in the A- and
B-registers, or the C-register, or the pseudo-accumulators AC1-AC4, When this is the case,
the description references an "implicit" argument, i.e., one whose address is not explicitly

part of the calling sequence,

3-1 AGl6

The compiler support subroutines are those which are not normally explicitly called by

the Fortran programmer. For example, the statement
Z=X+Y

produces the following DAP/700 code:

CALL L$22 { loads th . .

DAC X oads the value of X in the A- and B-registers
CALL =~ A$22

DAC Y$ ' adds the value of Y to the A- and B-registers
CALL H$22 ' stores the result in the A- and B-registers in
DAC z location Z

The three subroutines, L$22, A$22, and H$22, are compiler support subroutines. They

may be called explicitly by the Fortran programmer, if desired, as follows:

CALL L$22(X)
CALL A$22(Y)
CALL H$22(2)

This group of instructions performs the same function as the statement Z = X + Y and

generates the same DAP/700 code,

Any of the compiler support subroutines may be called by the Fortran programmer in the

following manner:

CALL ROUTINE NAME (ARGI1)
CALL ROUTINE NAME (ARGl, ARG2)
CALL ROUTINE NAME (ARG1, ARG2, ... ARGn)

EXAMPLES OF DAP/700 CALLS TO LIBRARY

CALL M$55
DAC ARGI1
Return

This call enters the complex multiplication subroutine, multiplying the contents of the
complex pseudo-accumulator by the complex value in locations ARG1-ARG1+3 in the standard
format for complex numbers, The result is stored in the complex accumulator (AC1-AC4),

and any of the other registers should be presumed to have become undefined,

CALL AMINO
DAC I

DAC J

DAC K

OCT 0
Return

3.2 AGl6

5

This subroutine compares the three integer arguments I, J, and K (no implicit argu-
ments) and returns with the value of the smallest of these, converted to data type real, in the

A- and B-registers. Other registers are now presumed to be undefined.

3-3 AGl6

SECTION 1V
INTRINSIC AND EXTERNAL FUNCTIONS AND SUBROUTINES

This section describes the mathematical and trigonometric functions, bit string
operations, and other special Fortran subroutines, arranged in alphabetic order by sub-

routine name,

4-1 AG16

ABS

Purpose To generate the absolute value of a real number.
DAP Calling CALL ABS
Sequence _ DAC ARG1 (a real number)
(Return)
Fortran Reference ABS(R)
Method This subroutine checks the real agrument, ARG1, for its algebraic

sign. If the sign is negative, the TWOs complement of ARGI is
calculated. If the sign is positive, the number remains unchanged.

Data Type of This absolute value function of a real number gives a real
Arguments and result.
Results

Other Routines L$22, N$22
Used

4-2 AG16

AIMAG

Purpose To obtain the imaginary part of a complex argument and convert it
to real format.

DAP Calling CALL AIMAG
Sequence DAC ARG (a complex number)
(Return)
Fortran Reference AIMAG(C)
Method The complex argument, ARGI, is placed in the complex accumu-

lator. The imaginary part of the complex number (AC3 and AC4)
is then loaded into the A- and B-registers.

Data Type of The imaginary part of the complex argument, ARG, is converted
Arguments and to a real number and placed in the A- and B-registers.

Results

Other Routines L$55, L$22, AC3

Used

4-3 AGl6

AINT

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

To truncate the fractional bits of a real number.

CALL AINT
DAC ARG! (a real number)
(Return)

AINT(R)

A constant (2*%%22) is successively added and subtracted from ARGI.

The available precision of real numbers is such that the fractional ’

part of this result is. lost. If ARGI is negative, its TWOs comple- =5
ment is taken before the addition and subtraction take place and it

is recomplemented before the subroutine exits. The resultant value

is effectively the largest integer < | ARG1| with the sign of ARGI.

The real argument remains a real number.

L$22, N$22, A$22, S$22

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

ALOG

To calculate the natural (base e) or common (base 10) logarithm
of a real number.

CALL ALOG (or ALOGI10)
DAC ARGl (a real number)
(Return)

ALOG(R) or ALOGI10(R)

The log, of the argument, ARG1, is computed. This value is
then converted to the desired base by multiplication by an appro-
priate constant.

lc:>g2 ARGI1 = FI*(C1+T(C3+T(C5+T(C7+T(C9)))))+B-.5,

where T = FI*F1 and Cl1

= .28853901El
C3 = .96179665E0
C5 = .57708664E0
C7= .41153510E0
C9 = .34280712E0

ol |
NI r\:lb

F is the fractional part of the normalized argument and B is the
binary exponent of the original argument which has been converted
to a real number.

The argument and the results are both real numbers.

The message '"LG'' is reported if a negative or zero-valued argu-
ment is used, and the result is undefined.

ARGS$, C$12, A$22, M$22, S$22, F$ER

4-5 AG-16

ALOGX

Purpose

DAP Calling
Sequence

Fortran Reference

Method

To calculate the natural (base e) or common (base 10) logarithm

of a real number.

CALL ALOGX (or ALOG or ALOGI10)
DAC ARG1 (a real number)
(Return)

ALOG(R) or ALOGI10(R)

logA Z = (log2 Z)*(logA 2), where Z=ARG1. Thus for the natural

logarithm,
InZ = (log2 Z)*(log2 2); for the common logarithm,

loglo Z = (logz Z)*(log10 2). The calculation simplifies in both

cases to a computation of log2 Z. Remembering that the floating-

point number Z can be expressed as Z = F*2**B, where F is the

fractional part and B the binary exponent of the normalized argu-

ment Z,

log2 Z = (In(F)/1n (2))+B.

Now, let F = F*K/K, where K may be
t K,
T i
i=1
such that F*K = 1+G

LOG2 X = InF*K/K) + B

1n(2)
- 1;‘;2’;« =10(K) . B then In(K) is
; ln(Ki)
i=1
= In(F*K) - In(K) , o
n(2) In(2)
= 1n(14G) - 1n(K)
m@Z) 1n@) B
=G - 1/2G% + 1/3G3. 1n(K) , g
Inz) 1n(2)
Since In(2) = . 69314718,
log, X = 1.442695141 G - . 7213475704 G? + . 4808984995 G
- lnSK[
Inz) TB
4.0

3

AGl6

ALOGX cont.

~~
Data Type of This function with a real argument results in a real number.
Arguments and
Results
Error Messages The message ""LG'' is reported if a negative or zero-valued argu-
ment is used, and an undefined result is returned.
Other Routines ARGS$, C$12, A$22, M$22, S$22, F$ER
- Used
N\
~

4-7 AGl6

ALOG10

Purpose

See ALOG, p. 4-5.

To calculate the common (base 10) logarithm.

AGlé6

Al

G-

Purpose

See MAXO0, p. 4-61,

To find the maximum real value in a list of integers.

AMAXO

AGl16

AMAX1

Purpose

See MAX1, p.4-62.

To find the maximum real value in a list of real arguments.

AGl6

~e

Purpose

See MINO, p. 4-63.

To find the minimum real value in a list of integers.

AMINO

AGl6

AMIN1

Purpose

See MIN1, p. 4- 64,

To find the minimum real value in a list of real arguments.

AGIl16

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

AMOD

To compute the remainder resulting from the division of two real
numbers.

CALL AMOD

DAC ARGl (real dividend)

DAC ARG?2 (real divisor)

OoCT 0 (end of arguments flag)
(Return)

AMOD(R, R)

This subroutine divides ARGl by ARG2 by calling D$22. The function
AMOD (ARG1, ARG2) is defined as:

Al - (A1/A2) * A2, where A1=ARG1 and A2=ARG2

(A1/A2) is the integer whose magnitude does not exceed the magni-
tude of A1/A2 and whose sign is the same as that of A1/A2.

This function with two real arguments results in a real number for
a remainder.

L$22, D$22, AINT, M$22, N$22, A$22

4-13 AGlé

ATAN

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Results

To calculate the principal value of the arctangent (i.e., lst or 4th
quadrant angle) of a real number or to compute and adjust for

quadrant the arctangent of a real number expressed as a ratio
(X/Y).

CALL ATAN or CALL ATAN2
DAC ARG]1 (a real number) DAC ARG1 (both arguments
(Return) DAC ARG2 are real numbers) s
OCT 0 (end of arguments flag)
(Return)

ATAN(R) or ATANZ(R,R)

For ATAN, let N = ABS(ARG1) The arctangent of N is evaluated by
dividing the total range 0SN<10%%75 into three intervals:
If N<10**(-B), ATAN(N) = N
If N>10%*10, ATAN(N) = pi/2
If 10%% (-8) < N < 10% %10, —
ATAN(N) = base angle + P(Z)

If N<1/2, Z = N and base angle = 0
If N<2, Z = (N-1)/(N+1) and base angle = pi/4
If N<2, Z = (-1/N) and base angle = pi/2

For ATANZ2, the arctangent of the quotient of ARG1/ARG2 (ARG =

side opposite, ARG2 = side adjacent, or sin/cos) is computed as

in ATAN and adjusted for quadrant by examination of the signs of s
the numerator and denominator.

Quadrant ARG!] ARG2 Quotient Results (radians)

1 + + 0to® 0 to pi/2

2 + - -to 0 pi/2 to pi

3 - - 0 to ® -pi to -pi/2
4 - + -to 0 -pi/2 to 0

414 AG16

Data Type of
Arguments and

Results

Other Routines

Used

ATAN cont.

This arctangent function of a real number results in a real number.

ARGS$, D$22, N$22, M$22, A$22, S$22

4-15 AG1l6

ATANZ2

See ATAN, p. 4-14,

4-16 AG16

Purpose

DAP Calling

Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

~
To find the smallest value in a list of real arguments and exit with
this value (AMIN1) or convert it to an integer (MIN1) and exit.
CALL MINI (or AMIN1)
DAC ARG1 (a real number)
DAC ARG2 (A real number)
DAC ARGn (last real argument)
OCT 0 (end of arguments flag)
(Return) .o
MINI(R,R, ... ,Rn) or AMINI1(R,R, ..., Rn)
Compare the arguments and retain the smallest value.
~
The arguments are real numbers for either call (MIN1 or AMIN1),
The result is real if AMIN! is called; the result is integer if MIN1
is called.
L$22, H$22, S$22, IFIX
~~

4-64 AGlé6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Types of
Arguments and

Results

Other Routines
Used

MINO

To find the smallest value in a given set of integers and exit with
this value or convert this value to a real number and exit.

CALL MINO (or AMINO)
DAC ARGI1 (an integer value)
DAC ARG2 (an integer value)

DAC ARGn (last integer argument)

OCT 0 (end of arguments flag)
(Return)
MINO(,IL, ..., In) or AMINO(I,I, ..., In)

This subroutine compares the arguments and retains the smallest
value. If AMINO is called, the result is converted to a real number
before the subroutine exits.

The arguments are integers in either call (MINO or AMINO). The
result is integer if MINO is called: the result is a real number if
AMINO is called.

FLOAT

4-03 AGl6

MAX1

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Type of

Arguments and
Results

Other Routines
Used

~~
To find the largest value in a list of real arguments and exit with
this value or convert it to an integer (MAX1) and exit.
CALL MAX1 (or AMAXI])
DAC ARG (a real number)
DAC ARG2 (a real number)
DAC ARGn (last real argument) e
OoCT 0 (end of arguments flag)

(Return)

MAX1(R,R,...) or AMAXI(R,R,...)
This subroutine compares the arguments and retains the largest
value. If MAXI1 is called, the result is converted to integer by
calling IFIX before the subroutine exits.

~
The arguments are real numbers in either call (AMAX1 or MAX]1).
The result is real if AMAXI1 is called; the result is an integer if
MAXI] is called.
L$22, H$22, S$22, IFIX

~

4-62 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Type of

Arguments and
Results

Other Routines
Used

MAXO

To find the largest value in a list of integer arguments and exit
with this value or convert it to real format (AMAXO0) and exit.

CALL MAXO0 (or AMAXO0)

DAC ARG1 (integer value)

DAC ARG2 (integer value)

DAC ARGn (last integer argument)

OoCT 0 (end of arguments flag)
(Return)

MAXO0(1,I1,...) or AMAXO0(,I,...)

This subroutine compares the arguments and retains the largest
value. If AMAXO is called, the result is converted to real by
calling FLOAT before the subroutine exits.

The arguments are integers in either call (MAX0 or AMAXO0). The
result is integer if MAXO0 is called; the result is a real number if
AMAXO is called.

FLOAT

4-61 AGle

LOC

Purpose

DAP Calling
Sequence

Fortran Reference

Method

To determine the address of the argument.

CALL LOC
DAC ARGI
(Return)

LOC(ARG]1)

N

Fetch the argument address (direct or indirect) and load it into
the A-register,

P

4-60 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

IXOR

To EXCLUSIVELY OR two integers

CALL IXOR (or CALL IEOR)

DAC ARG1 (an integer value)

DAC ARG?2 (an integer value)

OoCT 0 (end of arguments flag)
(Return)

IXOR(I, 1) or IEOR(I, I)

An EXCLUSIVE OR (ERA) of ARG2 (which is placed in the A-register)
and ARG1 is performed.

This function uses two integer arguments and gives an integer
result,

4-59 AGl6

ITEST

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Other Routines
Used

To test the status of a specified bit.

CALL ITEST
DAC ARG1 (memory location to be tested)

OCT N (bit of the word to be tested, 0-15)
OoCT 0 (end of arguments flag)
(Return)

CALL ITEST(L, J)

This subroutine loads a value of 1 into the A-register, shifts it the
number of places specified by the value N, and ANDs the A-register
with ARG1 to determine whether the specified bit is set. A value of
0 is returned in the A-register if the bit is not set; a 1 is returned
if the bit is set.

F$AT, ISHFT

4-58 AG16

ISTORE

Purpose To store the contents of the second argument in the location speci-
fied as the first argument.

DAP Calling CALL ISTORE
Sequence DAC ARG1 (target word address)
DAC ARG?2 (word to be stored)
OCT 0 (end of arguments flag)
(Return)
Fortran Reference ISTORE(ARGI, ARG2)
Method Fetch the target word address (ARG1) and save it.

Fetch the word to be stored (ARG2) and use it to replace the
contents of the target location. Effectively, the contents of ARG2
are stored in location ARGI1.

Other Routines F$AT
Used

4-57 AG16

—~~
Purpose To generate a value consisting of the sign of the second integer
argument and the magnitude of the first integer argument.
DAP Calling CALL ISIGN
Sequence DAC ARG1 (an integer value)
DAC ARG2 (an integer value)
OCT 0 (end of arguments flag)
(Return)
Fortran Reference ISIGN(I, I) ..
Method ARG?2 is tested for its algebraic sign and, depending on the sign of
ARG1, the procedure is as follows:
ARG ARG?2 Result
+ + + |ARG1 |
+ - - |ARG1 |
~
- + + |ARG1 |
- - - |ARG1 |
Data Type of Both arguments and the result are integers.
Arguments and
Results
~~

4-56 AGIl6

Purpose

DAP Calling
Seqguence

Fortran Reference

Method

Data Type of
7N Arguments and

Results

ISHFT

To shift an integer N places to the right or left in the A-register.

CALL ISHFT
DAC ARG1 (the integer to be shifted)
DAC ARG?2 (the number of places to shift the integer)
OCT 0 (end of arguments flag)
(Return)

ISHFT (I, #N)

This routine loads the value of ARG1 into the A-register and shifts
it the number of places specified by ARG2 (maximum value =% 16).
If ARG2 is negative, the number is shifted to the right; if ARG2

is positive, the number is shifted to the left.

The integer argument is shifted and return is made with the shifted
integer in the A-register.

4-55 AGlé6

ISET

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Other Routines
Used

)
To set a specified bit in the word specified by the first argument.
CALL ISET
DAC ARG1 (memory location of word)
OCT N (bit of word to be set)
oCcT 0 (end of arguments flag)
(Return)

CALL ISET(1,J)
This subroutine loads a value of 1 into the A-register, shifts it the
number of places specified by the value N, and save this value in a
temporary location, An EXCLUSIVE OR of the A-register with
ARGI1, an AND with the temporary storage word, and another
EXCLUSIVE OR are performed with ARG1. This value is stored
in ARGI1 and the subroutine exits.

- —~
F$AT, ISHFT '

Y

4-54 AGl6

IOR

N\

Purpose To logically OR two integers.

DAP Calling CALL 1IOR

Sequence DAC ARGl (An integer value)

DAC ARG?2 (an integer value)
OCT 0 (end of arguments flag)
(Return)
. Fortran Reference IOR(I, I)

Method The complement of the second argument is ANDed with the first
argument, and this value is EXCLUSIVELY ORed with the first
argument. The result is found in the A-register.

Data Type of This routine uses two integer arguments and gives an integer result.

N\ Arguments and

Results

an

4-53 AGle

INT

Purpose To truncate the fractional bits from a real argument, thus convert-
ing it to integer format.

See IFIX, p. 4-51.

4-52 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Type of

Arguments and

Results

Other Routines

Used

IFIX

To truncate the fractional bits from a real or double-precision
argument, thus converting it to integer format.

CALL IFIX (or CALL INT)
DAC ARG1 (a real number)
(Return)

or

CALL IDINT
DAC ARG1 {a double-precision number)
(Return)

IFIX(R), INT(R), IDINT(D)

This subrcutine truncates the fractional bits of ARG1, shifts it to
the right until the binary point is at the end of the register, and
normalizes the result. It then scales the value to an integer using
the characteristic. '

If either IFIX or INT is called, the argument is a real number and
the result is an integer. If IDINT is called, the argument is a double-
precision number and the result is an integer.

L$22, C$21

4-51 AGlé6

IFETCH

Purpose

DAP Calling
Seguence

Fortran Reference

Method

Other Routines
Used

To fetch the contents of the memory location specified by ARGI.

CALL IFETCH
DAC ARG
(Return)

IFETCH(ARGI1)

The A-register is loaded with the contents of the location specified

by ARGI.

ARGS$

AGl6

-

Purpose

See IFIX, p. 4-51.

IDINT

To truncate the fractional bits from a double precision argument,
thus converting it to integer format.

4-49 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Type of

Arguments and
Results

~

To compute the positive difference between two integer arguments.

CALL IDIM

DAC ARG]1 (an integer value)

DAC ARG?2 (an integer value)

OCT 0 (end of arguments flag)

(Return)

IDIM(I, I)

Compute DIF = ARG1-ARG2. If DIF is positive, the result of this

function is the value of DIF. If DIF is negative, the result of this

function is zero.

DIF = ARG1 - MIN(ARGI1, ARG2)

The result of this function with two integer arguments is an integer. i)
~

4-48 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Other Routines
Used

ICLR

To clear a specified bit.

CALL ICLR
DAC ARGI1 (memory location with bit to be cleared)

OCT N (bit to be cleared, 0-15)
OCT 0 (end of arguments flag)
(Return)

CALL ICLR(I, N)

This subroutine loads a value of 1 into the A-register, shifts it
the number of places specified by the value N, complements the
A -register, ANDs the A-register with ARG1, stores this value
back in ARG1, and exits.

F$AT, ISHFT

4-47 AGlé6

IAND

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data TIEe of

Arguments and
Results

~~

To logically AND two integers

CALL IAND

DAC ARG!1 (an integer value)

DAC ARG2 (an integer value)

OoCT 0 (end of arguments flag)

(Return)

IAND(I, I)

A logical AND (ANA) of the two integer argumehts is performed

and the routine exits.

This function uses two integer arguments and gives an integer

result.
~~
A~

4-46 AGle

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Type of

Arguments and
Results

IABS

To generate the absolute value of an integer.

CALL IABS
DAC ARG! (An integer value)
(Return)

IABS(I)

This subroutine checks the integer argument, ARGI1, for its algebraic
sign. If the sign is negative, the TWOs complement of ARGI is cal-
culated. If the sign is positive, the number remains unchanged.

This absolute value function with an integer argument results in an
integer.

4-45 AGlo

FLOAT

~
Purpose To convert an integer argument to real format.
DAP Calling A CALL FLOAT
Sequence DAC ARG1 (an integer value)

(Return)
Fortran Reference FLOAT (I) -°
Method This routine extracts the integer and converts it to real format,
leaving the result in the A- and B-registers.

Data Type of This routine converts an integer argument to a real number.
Arguments and
Results

~
Other Routines Cc$12
Used

~~

4-44 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Error Message

Other Routines
Used

N\

EXP

To calculate e <x, where x is a real number.

CALL EXP
DAC ARG!1 (a real number)
(Return)

EXP(R)

e**ARG1 = 2%3(ARG! * log,(e)) = 2%%(I+F), where I is the integer
and F is the fractional portion of the product ARG1 log_(e). The
value of F is used to define the quantities I', F(1), and F(2):

F 1 F(1) F(2)
-1 < F < -1/2 I-1 1/4 F+3/4
-1/2 < F<0 I-1 3/4 F+1/4
0 < F < 1/2 1 1/4 F-1/4
1/2<F < 1 I 3/4 F -3/4

From the above table, e*-ARGI1=2%(I'tF1+F2) = 2%%(I'+F1) % (2%%F2)

where
2%%F2 = e¥%(F2%In(2)) = e**F = (A(F))/ (A(F)-B(F))
A(F) = C1+(F*F), B(F) = C2*F

R
This exponential function with a real argument (e) results in a real
number.

When overflow occurs, the error message "EX' is reported and the
answer returned is the maximum value possible (1. 7TE38). When
underflow occurs, the value 0 is returned without an error message.

. ARG$, N$22, M$22, S$22, A$22, D$22, F$ER

4-43 AGl6

DSQRT

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of
Arguments and

Results

Other Routines

~
To calculate the square root of a double-precision number.
CALL DSQRT
DAC ARG1 (a double-precision number)
(Return)
DSQRT (D)
A first approximation to the double-precision square root of the .=
double -precision argument is obtained by calling the real square
root routine (SQRT). One more Newton-Raphson iteration is then
made to achieve full double-precision accuracy.
This square root function of a double-precision argument results
in a double-precision number.
N
FAT, L66, C$62, H$22, SQRT, C$26, H$66, D$66, A$66,
A$81
~

AGlé

..

~

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Used

To calculate the sine of a double-precision number expressed in
radians.

CALL DSIN
DAC ARG!1 (a double-precision number)
(Return)

DSIN (D)

An arbitrary angle X expressed in radian measure can be reduced
to the range 0 S Y £ ?— through the relation X = Y + N(pi/2).
Adjustment is made for quadrant before using a modified Taylor's
expansion.

This sine function with a double-precision argument results in a
double -precision number.

F$AT, DABS, M$66, H$66, C$61, C$16, N$66, A$66, MOD,
L$66, S$66

4-4] AGle

Purpose

DAF Calling
Sequence

Fortran Reference

Methg__c_l
Data Type of

Argmnents and
Results

Other Routines
Used

~~
To generate a value consisting of the sign of the second double-
precision argument and the magnitude of the first double-precision
argument,
CALL DSIGN
DAC ARGI (a double-precision number)
DAC ARG2 (a double-precision number)
OCT 0 (end of arguments flag) ..
(Return)
DSIGN(D, D) a
ARG2 is tested for its algebraic sign and, depending on the sign of
ARGI, the procedure is as follows:
ARGl ARG2 Result
- + +/ARG1/
- - -/ARG1/
+ + +/ARG1/
+ - -/ARG1/
~~
Both arguments for this call are double-precision numbers and the
result is a double-precision number,
FAT, L66, N$66
S

4-40 AGlé6

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Type of

Arguments and
Results

Other Routines
Used

DMOD

To compute the remainder resulting from the division of two double-

precision numbers,

CALL DMOD

DAC ARGI1 (a double precision number)

DAC ARG2 (a double-precision number)

OCT 0 (end of arguments flag)
(Return)

DMOD(D, D)

This subroutine divides ARGl by ARG2 by calling D$66, The

function DMOD (Al, A2) is defined as Al1-(A1/A2)*A2, where (AI,AZ)

is the integer whose magnitude does not exceed the magnitude of
Al/A2 and whose sign is the same as that of A1/A2,

This function with two double-precision arguments results in a

double-precision number for a remainder.

FAT, L66, D$66, H$66, DINT, M$6o, S$66, N$66

4-39

AG16

Purpose

DAP Calling
Seguence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

To find the smallest value in a list of double-precision arguments,

CALL DMIN!

DAC ARGl (a double-precision argument)
DAC ARG2 (a double-precision argument)
DAC ARGn (last double-precision argument)
OoCT 0 (end of arguments flag)

(Return)

DMINI1(D, D,...D)

Compare the arguments and retain the smallest value,

Both of the arguments are double-precision and the result of this
function is a double-precision number,

L$66, H$66, S$66

4-38 AGl6

Purpose

DAP Calling
Seguence

Fortran Reference

Method
Data Type of

Arguments and
Results

Other Routines
Used

DMAX1

To find the largest value in a list of double-precision arguments.

CALL DMAXI1
DAC ARGI1
DAC ARG2

DAC ARGn
OCT 0
(Return)

DMAX1(D,D,...D)

(first double-precision argument)
(a double-precision number)

(last double-precision argument)
(end of arguments flag)

Compare the arguments and retain the largest value.

The largest double-precision argument is stored in the double-
precision accumulator.

L$66, H$66, S$66

4-37

AGl6

DLOG10

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Txge of

Arggents and
Results

Error Messages

Other Routines
Used

To calculate the common (base 10) logarithm of a double-precision

number,

CALL DLOGIlO
DAC ARGl (a double-precision number)
(Return)

DLOG10(D)

See '"Method" for DLOG.

This logarithm function with a double-precision argument results

in a double-precision number,

The message '""DL'" is reported if a negative or zero-valued argu-

ment is found, The result is undefined,

F$AT, DLOG2, M$66

4-36

AGlo

Purpose

DAP Calling
Sequence

Fortran Reference

Method"

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

DLOG2

To calculate the common (base 2) logarithm of a double -precision
number.

CALL DLOG2
DAC ARG (a double-precision number)
(Return)

DLOG2(D)

This routine is used bf, DLOG and DLOGI10 to calculate log,(X),
where X is equal to F*#(2%*%B) and 1/2 <F < 1, See ''Method" for
DLOG.

This common logarithm function with a double-precision argument
results in a double-precision number,

The message ''DL'" is reported if a negative or zero-valued argu-
ment is found, The result is undefined.

FAT, L66, FER, C81, C$16, H$66, Z2$80, A$66, S$ob6, D$66,
M$66

4-35 AG16

DLOG

PurBose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

To calculate the natural (base e) logarithm of a double-precision

number,

CALL DLOG
DAC ARGI1 (a double-precision number)
(Return)

DLOG(D)

This routine is also used by DLOG2 and DLOGI10, Log A (X), where

X = ARGI, is calculated as log, iX)/logz(A). To calculate log, (X),
X is considered as the number F *(2%*B), where 1/2 <F <1, Log,
(X) = logp (Fl) + the binary exponent of F!, and log, (F1) = 1/2 +

Cl1%*Z +C3(Z%*3) +,,, where

Z=M

FT 1 /3) C1 = 2,885390081845024 D0

C3 = ,9617966484737566 D0
C5 = , 577086624639535D0

C7 = ,4115350984570017D0
C9 = ,3428071228932386 D0

This natural logarithm function of a double-precision argument

results in a double-precision number.

The message '"'DL" is reported if a negative or zero-value

d argu-

ment is found, The result in the double-precision accumulator is

undefined,

F$AT, DLOG2, M$66

4-34

AGlé6

iy

DINT

Purpose To truncate the fractional bits of a double-precision number.
DAP Calling CALL DINT
Sequence DAC ARGI1 (a double-precision number)
(Return)
Fortran Reference DINT(D)
Method A constant (2%%38) is successively added and subtracted from the

argument, ARGl. The available precision of double-precision
numbers (39 bits) is such that the fractional part of this result is
lost. If ARGIl is negative, its TWOs complement is taken before
the addition and subtraction take place and it is recomplemented
before the subroutine exits. The resultant value is effectively
the largest integer <|ARGI1| with the sign of ARGI.

Data Type of The double -precision argument after truncation remains a double-
Arguments and precision number,

Results

Other Routines L$66, N$66, A$66, S$66, AC1

Used

4-33 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments andé
Results

Other Routines
Used

~
To compute the positive difference between two real arguments.
CALL DIM
DAC ARGI1 (a2 real number)
DAC ARG2 (a real number)
OoCT 0 (end of arguments flag)
(Return)
DIM(R, R)
ARGI - ARG2 is computed, If the result is positive, this value is
the result given. If ARGl - ARG2 is a negative quantity, the
result of this function is zero.
This routine to calculate the difference between two real numbers
results in a real number.
~
L$22, S$22
~~

4-32 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Type of

Arguments and

Results

Other Routines

Used

DEXP

To calculate e*%X, where X is a double-precision number.

CALL DEXP
DAC ARG1 (a double-precision number)
(Retarn) . |

DEXP(D)

In calculating e¥**ARGI, the following method is used: e**ARGI =

2%%(ARGl*logy(e)) = 2%*(I+F), where Iand F are the integer and
fractional portions, respectively, of the product ARGl*log;,(e).

This function raises e to the power of a double-precision argument
and gives a double-precision result,

FAT, L66, M$66, H$66, C$61, C$16, N$66, A$66, 5$66, D$66,
A$81

4-31 AG16

DCOS

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Txge of

Arguments and
Results

Other Routines
Used

~~
To calculate the cosine of a double -precision number expressed in
radians.
CALL DCOS
DAC ARG1 (a double-precision number)
(Return)

-
DCOS(D) e
The cosine function is transformed into the sine function using the
trigonometric identity cos (X) = sin (pi/24X). Sin (pi/2+X) is then
evaluated, with X = ARG1.
This function with a double-precision argument gives a double-
precision result,
FAT, L66, A$66, H$66, DSIN

s ®

~

4-30 AGlé6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of
Arguments and

Results

Other Routines
Used

DBLE

To convert a real number to double-precision format.

CALL DBLE
DAC ARG1 (a real number)
(Return)

DBLE(R)

This subroutine stores the real argument, ARGI, in AC1 and AC2.
A word of zeros is appended to the real number as the least signifi-
cant word of the double-precision fraction and stored in AC3.

The real argument is converted to a double-precision number.

FAT, L22, C$26

4-29 AGle6

DATANZ2

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

~
To calculate the arctangent of the quotient of two double-precision
numbers,
CALL DATAN?2
DAC ARG1 (a double-precision number (X))
DAC ARG2 (a2 double -precision number (Y))
OCT 0 (end of arguments flag)
(Return)
DATAN2(D, D)
The arctangent of the quotient (X/Y) is adjusted for the quadrant
by examining the signs of the numerator and denominator. See
"Method'" for ATAN,
This arctangent function of a double-precision quantity gives a
double -precision result. 3
The error message ''DT" is reported if the second argument is
zero. The result in the double-precision accumulator is undefined.
FAT, L66, H$66, F$ER, D$66, DATAN, S$66, A$66
~

4-28 AG16

Purpose

DAP Calling -
Seguence

Fortran Reference

Method
Data Type of

Arguments and
Results

Other Routines
Used

DATAN

To calculate the arctangent of a double-precision number.

CALL DATAN
DAC ARG!1 (a double-precision number)
(Return)

DATAN(D)
The principal value is computed. See '"Method" for ATAN.

This function with a double-precision argument results in a double -
precision number.

F$AT, DABS, H$66, C$81, L$66, A$66, D366, M$eb, N$66

4-27 ' AG16

DABS

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

~~
To generate the absolute value of a double-precision number.
CALL DABS
DAC ARG1 (a double-precision number)
(Return)
DABS(D) -
This subroutine checks the double-precision argument, ARG, for
its algebraic sign. If the sign is negative, the TWOs complement of
ARGI is calculated. If the sign is positive, the number remains
unchanged.
This function with a double-precision argument results in a
double-precision number.)
N
FAT, L66, N$66
~

4-26 AG16

Purane

DAP Calling
Sequence

Fortran Reference

Method

Data Type of
Arguments and
Results

Other Routines
Used

CSQRT

To calculate the square root of a complex number.

CALL CSQRT
DAC ARG (a complex number)
(Return)

CSQRT(C)

1f the complex argument is positive, (A+B)#%,5 = C+DI is determined
as follows:

C
D

n
—
=
>
0
+
o
%
D
(2]
+
5
z
~
N
D
3 v
(8]

B/(2*C)

If the argument is negative, ABS(D) = (((Ax*2+B**2) SA)/2)k%, 5,

The sign of the real part of the result will be positive and the sign
of the imaginary part of the result will be the same as the sign of

the imaginary part of the argument. That is, the results will lie
in quadrants I or IV of the complex plane.

This square root function of a complex number results in a complex
number. '

FAT, SUB, CABS, H$22, ABS, A$22, M$22, SQRT, L$22, D$22,
L$55 ‘

4-25 AGl6

CSIN

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

To calculate the sine of a complex number with the real part in
radian measure.

CALL CSIN
DAC ARGl (a complex number)
(Return)

CSIN(C) -

The sine function of the complex number ARG1 (X+IY) is computed
as follows:

SIN (X+1Y) = SIN(X) * COSH (Y) + I * (COS(X) * SINH(Y))

where SINH(Y) = 1/2 * (E#*%Y -E%%.Y)
COSH(Y) = 1/2 * (E¥*Y+E%*.Y)

The argument and the result of this function are complex numbers. -

FAT, SUB, EXP, H$22, L$22, D$22, A$22, SIN, M$22, S$22, COs,
L$55

4-24 AGIl6

Purpose

See SIN, p. 4-69.

COS

To calculate the cosine of a real number expressed in radians.

4-23 AGl6

CONJG

Purgose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

~
To obtain the conjugate of a complex number.
CALL CONJG
DAC ARG1 (a complex number)
(Return)
CONJG(C)
This subroutine reverses the sign of the imaginary part of the -®
complex argument (ARGI).
The complex argument in this function remains a complex number.
FAT, SUB, L$22, H$22, N$22, L$55 ’
N

4-22 AG16

Purpose.

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

CMPLX

To combine two real numbers into one complex quantity.

CALL CMPLX

DAC ARGI1 (a2 real number)

DAC ARG?2 (a real number)

OCT 0 (end of arguments flag)
(Return)

CMPLX(R, R).

The first real argument (ARG1) is stored in the real portion of the
complex accumulator (AC1 and AC2). The second real argument
(ARG2) is stored in the complex portion of the complex accumulator
(AC3 and AC4).

The two real arguments are combined into one complex number and
stored in the complex accumulator.

F$AT, SUBS$, L$22, H$22, L$55

4-21 AG16

CLOG

Purpose To calculate a particular value of the natural logarithm (base 2}
of a complex number.

DAP Calling CALL CLOG
Sequence DAC ARG1 (a complex number)
(Return)
Fortran Reference CLOG(C)
Method The following algorithm is used to calculate In(ARG1), where

ARGl = X + IY:
In (X+IY) = 1ln (X+IY) = R+I(¢)
In (XH#2+Y#42)%%, 5 = 1/2 1n (X¥#2+Y #%2)

f

where R

¢ = ((TAN®*-1)(Y/X)

0, =1, £2, ...

n

¢ + 2Kpi

where K

A particular value for ¢ is chosen such tha: -pit ¢ £ pl by enter-
ing the arctangent routine ATAN2.

Data Type of This logarithm function of a compiex number gives a complex resuit.
Arguments and
Results

Other Routines FAT, L22, M$22, H$22, A$22, ALOG, ATAN2, L$55
Used

4-20 AGié

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

CEXP

To calculate the exponential of a complex number with the imaginary

part in radian measure.
/

CALL CEXP
DAC ARG1 (a complex number)
(Return)

CEXP(C)

The following algorithm is used to calculate the value of e “ARG]I,
where ARGI1 is a complex number:

If ARG1 = X+1IY,

This function raises e to a complex power and gives a complex result.

FAT, SUB, EXP, H$22, COS, M$22, SIN, L$55

4-19 AGl6

CCOS

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

To calculate the cosine of a complex number with the real part
ir radian measure.

CALL cCcCOos
DAC ARGI1 (a complex number)
(Return)

CCOS(C)

The cosine function is transformed into the sine function by use of
the trigonometric identity cos (Z) = sin (Z+pi/2), where Z= Y+IY.
Sin (Z+pi/2) is then evaluated.

This cosine function of a complex number results in a complex number.

N

FAT, L55, A$55, H$55, CSIN

4-18 AG16

CABS

Purpose To generate the absolute value of a complex number.
DAP Calling CALL CABS
Sequence DAC ARG1 (a complex number)
(Return)
Fortran Reference CABS(C)
Method The argument is squared and its square root is taken to arrive at

its absolute value; e.g., if ARGl = X+1IY,

Data Type of This absolute value function of a complex number gives a real
Arguments and result.

Results

Other Routines F$AT, SUBS, L$22, M$22, H$22, A$22, SQRT

Used

4-17 AGIl6

s

~

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data nge of

Arguments and
Results

Other Routines
Used

MOD

To compute the remainder resulting from the division of two integers.

CALL MOD

DAC ARG (an integer value)

DAC ARG2 (an integer value)

OCT 0 (end of arguments flag)
(Return)

MOD(I, I)

This subroutine divides ARG1 by ARG2 by calling D$11. The function
MOD(A1, A2) is defined as Al1-(A1/A2)*A2, where (Al/A2) is the
integer whose magnitude does not exceed the magnitude of Al/A2

and whose sign is the same as that of A1/A2.

This function with two integer arguments results in an integer for a

remainder.

D$11, M$11

4-65 AGlob

NOT

Purpose

DA P Calling
Sequence

Fortran Reference

Method

Data Type of
Arguments and

Results

To ONEs complement an integer argument.

CALL NOT
DAC ARGI (integer value)
(Return)

NOT (1)

This subroutine performs the ONEs complement (CMA) of the
integer argument, ARGI1, and exits.

The argument is an integer and the result is an integer.

4-06 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Other Routines
Used

OVERFL

To check for an error cordition.

CALL OVERFL
DAC J (an integer value)
(Return)

OVERFL(J)

This subroutine checks error flag ACS for a nonzero value. which
indicates that an entry to the error subroutine. F$ER, was made

since the last call to OVERFL. If AC5 is nonzero,. the variable J
is set to 1 and ACS5 is cleared. If AC5 is zero, J is set to 2

AC5S

4-07 AGlo

Purgose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

To generate a value consisting of the si

CALL SIGN
DAC ARGI1
DAC ARG2
OoCT 0
(Return)

SIGN(R, R)

ARG2 is tested for its algebraic si
ARG]1, the procedure is as follows

ARG ARG?2

+
+

Both arguments are real numbers and the

L$22, N$22

(a real number)
(a real number)

gn of the second real argu-
ment and the magnitude of the first real argument,

(end of arguments flag)

+

+

+

gn and, depending on the sign of

Result

| ARGI |
| ARG |
| ARG1 |
| ARGI |

result is a real number.

AGlw

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Txge of

Arguments and
Results

Other Routines
Used

To calculate the sine or cosine of a real number expressed in radians.

CALL SIN (or COS)
DAC ARGI1 (a real number)
(Return)

(SIN(R) or COS(R)

The angle is reduced to the first quadrant by the use of the relation
X = Y+N*(pi/2) and the identities sin(Y) = cos(pi/2-Y) and cos(Y)

= sin(pi/2-Y). A modified Taylor's expansion is then used to cal-
culate the sine of the first quadrant angle.

The cosine function is transformed into the sine function by the use
of the identity cos(X) = sin(pi/2-X); sin(pi/2-X) is then evaluated,
where X=ARG]1.

This sine function with a real argument results in a real number.

ARGS$, N$22, M$22, S$22, A$22

4-69 AG16

SLITE

Purpose To set or reset the pseudo sense lights and switches.

DAP Calling) CALL SLITE

Sequence DAC ARG1 (where ARGI1 is the address of the variable con-
(Return) taining the sense light number).

CALL SLITET (or CALL SSWTCH)

DAC ARGI (where ARG is the address of the variable con-
DAC ARG2 taining the sense light or switch (SSWTCH)
OCT 0 number to be interrogated, and ARG2 is the
(Retura) address of the location in which to store the
" !"set or reset' indicator: (1=set, 2= reset).
Fortran Reference CALL SLITE (I), CALL SLITET(,J), CALL SSWTCH(I, J)
Method SLITE --- The ARG$ routine is used to place the variable address in

the index register. The argument (I) is tested for zero. If zero, all
sense light positions are reset; otherwise, the sense light specified
is shifted to its appropriate position and INCLUSIVELY ORed with
current settings, leaving them undisturbed.

SLITET --The ARGS$ routine is used to place the sense light number

in the A-register and the location of the variable in the index register.
If the sense light number is 0, a 2 is inserted into the variable J,
signifying a reset condition. Otherwise, the sense light bit is moved
to its proper position in the A-register. A logical AND is executed
with the sense light register. If the result of the AND is zero, the
sense light is reset and a 2 is placed in J. If the result of the AND

is not zero, an EXCLUSIVE OR is carried out with the sense light
register, resetting the sense light specified and storing a 1 in J to
signify that the sense light was set on entry.

SSWTCH - The ARG$ routine is used to place the sense switch number
in the A-register and the variable location in the index register. If
the sense switch number is 0 (no real switch), J is set to 1. If the
sense switch number is valid (1 to 4), J is set to 1 if the external
switch is set and set to 2 if the external switch is not set.

Other Routines ARGS$, L$33
Used

4-70 AG16

SLITET

Purpose To set or reset the pseudo sense lights and switches.
furpose p g

See SLITE, p. 4-70.

4-71 AG16

SQRT

Purpose To calculate the square root of a real number. (This subroutine has
a high-speed version, SQRTX.)

DAP Calling " CALL SQRT
Sequence DAC ARGI1 (a real number)
(Return)
Fortran Reference SQRT(R)
Method Given the argument N = F(2%%e), the mantissa is adjusted so that

eisevenand 1/4 < e < 1. An initial approximation to the square
root (Y) is chosen as follows:

Y =7/8(F)+ 9/32 ife <1/2
Y =9/16(F) + 7/16 if e 2 1/2

Two Newton-Raphson iterations are then made to obtain full single-
precision accuracy.

Data Type of This square root function of a real number results in a real number.

Arguments and
Results

Error Messages The error message ''SQ" is reported if a negative argument is found.
An undefined result is returned in the A-and B-registers.

Other Routines ARGS$, DIV$, D$22, A$22, F$ER
Used

4-72 AGle

Purpose

DAP Calling
Sequence

Fortran Reference

Method
Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

SQRTX

To calculate the square root of a real number. (This routine re-
quires the High-Speed Arithmetic Option.)

CALL SQRTX (or SQRT)

DAC ARGI (a real number)
(Return)

SQRT(R)

Given the argument N=F#*(2%%e), the mantissa is adjusted so that
eis evenand 1/4 £ e < 1. An initial approximation to the square
root of ARG1 is chosen as follows:

ARGl = 7/8(F)+ 9/32 if e <1/2
ARGl = 9/16(F) + 7/16 if e 2 1/2

Two Newton-Raphson iterations are then made to obtain full single-
precision accuracy.

This square root function of a real number results in a real number.

The error message ''SQ'" is reported if a negative argument is found.
An undefined result is returned in the A-and B-registers.

ARGS$, D$22, A$22, F$ER

4-73 AGle

SSWTCH

Purpose To set or reset the pseudo sense switches.
furpose p

See SLITE, p. 4-70.

4-74 AG16

TANH

Purpose To calculate the hyperbolic tangent of a real number.
DAP Calling CALL TANH
Sequence DAC ARG1 (a real number)
(Return)
Fortran Reference TANH(R)
Method TANH = (e**%(2%X)-1)/(e**(2%X)+1), where X = ARGI.
Data Type of This tangent function with a real argument results in a real number.
Arguments and
Results
Other Routines L$22 EXP, A$22, H$22, D$22
Used

4-75 AGl6

SECTION V
COMPILER SUPPORT SUBROUTINES

This section describes the compiler support subroutines, i.e., those subroutines
which are not normally explicitly called by the Fortran programmer. These subroutines
perform conversions between data types, logical relationals, arithmetic operations, and

miscellaneous functions.

5-1 AGlo

AS21

Pureose

DAP Calling
Seguence

Method

Data TXEe of
Arguments and

Results

Other Routines
Used

To add an integer argument to a real number.

CALL A$21
DAC ARG2 (an integer value)
(Return)

This subroutine adds an integer argument, ARG2, to a real number
(in the A- and B-registers), The integer is converted to a real
number by calling FLOAT, and the real addition routine (A$22) is

called.

<implicit real argument> + < integer argument> — < real result>

FAT, H22, FLOAT, A$22

AGl6

Pureose

DAP Calling

Sequence

Method

Data nge of

Arguments and
Results

Error Messages

Other Routines
Used

AS22

To add or subtract real numbers. This subroutine has a high-
speed version, A$22X.

CALL A$22 (or S$22)
DAC ARG2 (a real number)
(Return)

A$22 (Add) - The contents of ARG2 are added to the contents of the
A- and B-registers after both numbers are unpacked and scaled.
The result is normalized and the characteristic is adjusted.

S$22 (Subtract) = The value contained in ARG2 is negated and the
add routine, ‘A$22, is entered.

< implicit real argument> + < real argument> — < real result>

The error message '"SA'" is reported if an arithmetic overflow
occurs, i.e., the result is > 2%%127, An undefined result is

" returned.

ARGS$, N$22, F$ER

5-3 AG16

AS22X

Purpose

DAP Calling
Seguence

Method

Data TXEe of

Arguments and
Results

Error Messages

Other Routines
Used

To add or subtract real numbers,

Speed Arithmetic Option.)

CALL A$22
DAC ARG2
(Return)

(or S$22)
(a real number)

(This routine requires the High-

A$22 (Add) - The contents of ARG2 are added to the contents of the
A- and B-registers after both numbers are unpacked and scaled.
The result is normalized and the characteristic is adjusted.

S$22 (Subtract) — ' The value contained in ARG2 is negated and the
add routine, A$22, is entered.

<implicit real argument> * < real argument> —» < real result>

The error message ""SA" is reported if an arithmetic overflow
occurs, i.e., the result is > 2%*%127, An undefined result is

returned.

N$22, F$ER

5-4

AGl6

PurEo'se

DAP Calling
Seguence

Method

Data Type of

Arguments and
Results

Other Routines

Used

ASS1

To add an integer argument to a complex number.

CALL A$51
DAC ARG2 (an integer value)
(Return)

This routine converts the integer value to a real number by calling
C$12 and it calls the complex/ real addition routine (A$52).

< implicit complex argument> + < integer argument> — < complex

result>

FAT, H55, C$12, H$22, L$55, A$52

5-5 AG16

ASS2

PurEose

DAP Calling
Seguence

Method

Data Tme of

Arsuments and

Results

Other Routines
Used

To add a real argument to a complex number.

CALL A$52 |
DAC ARG2 (a real number)
(Return)

The following is the algorithm used to compute the operation of
adding a real argument (ARG2) to the contents of the complex
accumulator (Y):

Y + ARG2 = A+ B * I+ ARG2
(A + ARG2) + B * I) .s

A+BxI

n n

where Y

< implicit complex argument> + < real argument> — < complex
result>

FAT, H55, L$22, A$22, H$22, L$55

5-6 AGlé6

PurRose

DAP Calling
Seguence

‘Method

Data TXEe of

Arguments and
Results

Other Routines
Used

ASSS

To add complex numbers.

CALL AS$55

DAC ARGZ (a complex number)
(Return)

The following is the algorithm used in the addition of two complex
numbers (the contents of ARG2 and the complex accumulator):

X*ARG2 = (A+B*I) + (M+N*I) = (A+M) + (B+N) * I
where X = A+B*I and ARG2 = M+N*I

< implicit complex argument> + < complex argument> —

< complex result>

FAT, H55, SUB$, L$22, A$22, H$22, L$55

5-7 AGl6

AS61

Pureose

DAP Calling
Seguence

Method

Data TzEe of

Arguments and
Results

Other Routines
Used

To add an integer argument to a double-precision number.

CALL A$61
DAC ARG2 (an integer value)
(Return)

This subroutine calls C$12 to convert the integer argument to
real and calls the double-precision/real addition routine (A$62).

t

< implicit double-precision argument> + < integer argument> —»
< double -precision result>

FAT, H66, C$12, H$22, L$66, A$62

5-8 AGl6

-

Pureose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

AS62

To add a real number to a double-precision number.

CALL A$62
DAC ARG2 (a real number)
(Return)

This subroutine calls DBLE to convert the real argument to a
double-precision number and calls A$66 to perform the double-
precision addition.

< implicit double-precision argument> + < real argument> —»
< double -precision result>

FAT, H66, DBLE, A$66

5-9 AG16

AS66

PurEose

DAP Calling
Seguence

Method

Data TzEe of
Arguments and
Results

Error Messages

To add, subtract, multiply, or divide normalized, double-

precision numbers. (This subroutine has a high-speed version,
A$66X.)

CALL A$%66 (or S$66, M$66, or D$66)
DAC ARG2 (a double-precision number)
(Return)

The contents of ARG2 are added to, subtracted from, multiplied
with, or divided into the contents of the double-precision accumu-
lator (X).

Add (A$66) - The numbers are unpacked and scaled to coincident
places. The addition process takes place (X+ARG2), and the result
is normalized.

Subtract (S$66) — The numbers are unpacked and scaled to coincident
places. The subtraction process takes place (X-ARG2), and the
result is normalized.

Multiply (M$66) = X*¥*ARG2 = (X*2%*El) * (Y*2%*E2)
= X*ARG2#%2%% (E1+E2)
Let X = (A+B*2%:% (-N))
and ARG2 = (C+D*2%% (=N))
X*ARG2 = A%*C+(A*D+B*C) * 2%% (-N)) ~
The term B#*D#*2%% (-2N) is ignored.
The least significant bits of the product are:
L (A*C)+H*(A*D)+H*(B*C)

Divide (D$66) -~ The quotient X/ARG2 is obtained by the binomial
expansion of 1/X = X%%(=1)., The high-order and low-order parts
(H and L) of the quotient are computed as follows:

(A+B#2:% (-N))/ (C+D#2%:% (-N)) = (A+B=A%*D/C)/C
H = (A+B-A*D/C)/C
L = remainder (H)/C

+

< implicit double -precision argument> - < double -precision
/

argument> —s < double-precision result>

1. The error message '"AD" is printed if an addition or
subtraction over/underflow occurs.

2. The error message "PZ' is printed if a division by zero
is attempted.
3. The error message '"MD'" is printed if a multiplication or
division over/underflow occurs. N

5-10 AG16

ASG66 cont.

~
After an error message is reported, the double-precision accumu-
lator is loaded with the maximum ((2%%128)-1) or minimum
(2%%(-128)) value (as determined by the correct sign) before
returning to the calling program.
Other Routines N$66, F$ER, H$66, L$66, ARGS$, ACl, AC2, AC3
Used
/N
N

5-11 AG1l6

AS66X

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

~~
To add, subtract, multiply, or divide normalized, double-precision
numbers. (This routine requires the High-Speed Arithmetic Option.)
CALL A$66X (or A$66, S$66, S$66X, M$66, M$66X, D$66, D$66X)
DAC ARG2 (a double-precision number)
(Return)
The contents of ARG2 are added to, subtracted from, multiplied with, e
or divided into the contents of the double-precision accumulator. See
A$66, described on the preceding pages, for a detailed description of
the methods used. "
+
< implicit double-precision argument> - < double -precision
/
argument> — < double-precision result>
See Error Messages for A$66.
Y
N$66, F$ER, H$66, L$66, ARGS$, ACl, AC2, AC3
~

5-12 AGl6

Purpose

DAP Calling -
Sequence

Method

Data Type of
Arguments and

Results

Error Messages

Other Routines
Used

AS$S81

To add an integer value (I) to the characteristic of the variable in the
double-precision accumulator (effectively, multiplication by 21,

CALL A$81
DAC ARG2 (an integer value)
(Return)

The characteristic (base 2) of the value in the double-precision accum-
ulator is increased (or decreased) by an integral value, ARG2. For
example, if ARG2= 2 and the value in the double-precision accumu-
lator is 8.0 (23’ 0), the result of this call would be 27° 0+2 5y 2 5.0
32.0 (8.0%22), If the absolute value of the result is less than 2#%(-128),
a value of zero is returned.

< implicit double -precision argument> * (2%% < integer argument>) —»
< double -precision result> ‘

If there is exponent overflow, an '""EQ'' error message is reported and
external locations AC1 and AC2 are loaded with the maximum value
possible ((2%*128)-1) with the sign of ARG2.

N$22, F$ER, ACl, AC2

5-13 AG1l6

AC1

(AC2, AC3, AC4, ACH)

Purpose Locations to be used as a double-precision or complex accumulator
by the Fortran library routines.

se ACl, AC2, AC3: double-precision accumulator.
T ACl1, AC2: complex accumulator, real portion.
AC3, AC4: complex accumulator, imaginary portion.,
AC5: error flag.

5-14 AG1l6

PurEose

DAP Calling
Sequence

Method

ARGS

To convert the indirect address of an argument to its corresponding
direct address.

CALL ARGS$
DAC#* ARG2 (usually a subroutine entry)
(Return))

The address of the argument is returned in the index register. This
subroutine may be used upon entering a subroutine to set up the return
address.

5-15 AGl6

csi12

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

To convert an integer to a real number.

CALL C$12
(Return)

The integer value in the A-register is placed in the B-register and
the A-register is set to 045600 (octal), representing a characteristic
such that the number fits the description given for a real number ex-
cept that it is not '""normalized." A$22 (with argument = 0

(040000, 000000), also unnormalized) is called to normalize the
result.

The integer value in the A-register is converted to a real number and

placed in the A- and B-registers.

A$22, N$22

5-16 AGlé6

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results .

Other Routines
Used

CS$15

To convert an integer to a complex number.

CALL C$15
(Return)

This subroutine converts the integer to a real number by calling C$12
and converts the real number to a complex number by calling C$25.

An integer value in the A-register is converted to a complex value

and the result is placed in the complex accumulator,

C$12, C$25

5-17 AGle

C$16

PurEose

DAP Calling
Seguence

Method

Data Type of

Arguments and
Results

Other Routines
Used

To convert an integer to a double-precision number.

CALL C$16
(Return)

The integer in the A-register is normalized and converted to real by
This real value is then converted to a double-precision
number by calling C$26.
accumulator. AC1 contains the contents of the B-register (the real
exponent), AC2 contains the contents of the A-register (the most
significant word of the fraction), and AC3 contains a word of zeros.

calling C$12,

The integer value in the A-register is converted to a double-precision

The result is placed in the double-precision

number and placed in the double-precision accumulator.

C$12, C$26

AGlé

-

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Error Messages

Other Routines
Used

cs21

To convert a real number to an integer.

CALL C$21
(Return)

This subroutine scales the real number in the A- and B-registers to
23 bits by adding the octal value 045700 (2%%22) to truncate the
fractional part of the real number. The result is in the A-register.

The real number in the A- and B-registers is converted to an integer
and returned in the A-register.

The message ''RI" is reported if the integer (I) is too large when con-
verted from real to integer. The integer must be in the following
range: -215 < 1 €215_1. An undefined result is returned in the A-
register.

N$22, A$22, F$ER

5-19 AG1l6

CcCS$2S

Purpose To convert a real number to a complex number,

DAP Calling CALL C$25

Sequence (Return)

Method The A- and B- registers are stored in AC1 and AC2, respectively

(the real part of the complex number), and AC3 and AC4 (the imagin-
ary part of the complex number) are set to zeros.

Data Type of The real argument in the A- and B- registers is converted to a com-
Arguments and plex number and stored in the complex accumulator (AC1l, AC2, AC3,
Results and AC4).

Other Routines H$22, CMPLX

Used

5-20 AGl6

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

C$26

To convert a real number to a double-precision number,

CALL C$26
(Return)

The number in the A- and B-registers is placed in AC1 and AC2.
AC3 is cleared and the routine exits.

The real number in the A- and B-registers is converted to double-

precision and placed in the double-precision accumulator.

ACl, AC2, AC3

5-21 AGlo

CS$S1

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

To convert a complex number to an integer.

CALL C#$51
(Return)

This subroutine calls C$52 to convert the value in the complex accum-
ulator to a real number and calls C$21 to convert from real to
integer.

The complex number in the complex accumulator is converted to an

integer and placed in the A-register.

C$52, C$21

5.22 AGlé6

“

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines
Used

C$S2

To convert a complex number to a real number.

CALL C$52
(Return)

The real part of the complex number (in AC1 and AC2) is loaded into
the A and B registers as a real number.

The complex number in the complex accumulator is converted to real

format and placed in the A- and B-registers.

H$55, L$22

5-23 AGle6

CS$61

PurEose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

To convert a double-precision number to an integer.

CALL C$61
(Return)

This subroutine calls C$62 to convert the number in the double-
precision accumulator to real and calls C$21 to convert the real
number to integer.

The double-precision value in the double-precision accumulator is

converted to an integer and placed in the A-register.

C$62, C$21

5-24 AGlé6

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines
Used

cseéez2

To convert a double-precision number to a real number.

CALL C$62 or CALL SNGL
(Return) DAC ARGl (a double-precision
(Return) number)

AC1 and AC2 (the exponent and the most significant part of the
fraction of the number in the double-precision accumulator) or the
first two words of ARG1 (if SNGL is called) are loaded into the A-
and B-registers. The least significant part of the fraction (AC3,
word 3) is not considered in the result.

The double-precision value in the double-precision accumulator or
in ARG1 is converted to a real number and placedin the A- and B-
registers.

L$22, N$66, N$22, L$66, AC1, AC2

5-25 AGle

CcCS$81

Purmse

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

To convert the exponent of the value in the double-precision accumu-
lator to an integer.

CALL C#$81
(Return)

Extract the characteristic (base 2) from the value in the double-
precision accumulator (AC1) and convert it to an integer.

The characteristic of the double-precision argument is converted to
an integer,

ACl

5-26 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

Other Routines
- Used

CSEQ

To determine whether two complex numbers are equal.

This subroutine is not intended for use by a DAP programmer. It
may be called, however, if desired:

CALL C$EQ
(Return)

< complex expression> . EQ. < complex expression>

Note for Complex Relationals: Both C$EQ and C$NE expect that a
Fortran programmer has used a complex relational expression
(C.EQ. Cor C.NE. C, where C is a complex expression) which
would cause the Fortran compiler to subtract the two complex ex-
pressions and leave the result in the com plex accumulator (AC1-AC4).

This subroutine, C$EQ, checks the result of the subtraction in AC1
and AC3, the most significant parts of the real and imaginary portions
of the complex result, for zero. L they are both zero, the two
complex expressions are equal and the relation is true; the A-register
is set to 1. If the result of the subtraction is nonzero, the relation is
false and the A-register is set to 0.

Caution: Two expressions that are mathematically equal may not be
exactly equal when compared if they were calculated in a different
manner.

The two complex expressions are compared and a logical 0 and 1 is
returned in the A-register.

ACl, AC3

lACZ and AC4 need not be checked, since AC1 and AC3 cannot be zero unless AC2 and AC4 are

zero, respectively. (The numbers are normalized, thus moving any nonzero value in AC2 or
AC4 to AC1 or AC3, respectively.)

5-27 AGlé6

CSNE

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of
Arguments and

Other Routines
Used

To determine whether two complex arguments are unequal.

This subroutine is not intended for use by a DAP programmer. It
may, however, be called if desired:

CALL C$NE
(Return)

< complex expression> ,NE, < complex expression>

. e
See '""Note for Complex Relationals, ' page 5-27, This subroutine

checks the result of the subtraction in AC1 and AC3, the most
significant parts of the real and imaginary portions of the complex
result, for zero. (See footnote, page 5-27.) If they are both zero,
the two complex expressions are equal and the relation is false;
the A-register is set to 0. If either AC1 or AC3 is not zero, the
relation is true and the A-register is set to 1.

Caution: Two expressions that are mathematically equal may not

be exactly equal when compared if they were calculated in a different
manner,

The two complex expressions are compared and a logical 0 or 1 is - 7~
returned in the A-register.

ACl1, AC3

- 5-28 AGl6

To divide two integers. (This subroutine has a high-speed version,

Purpose
D$11X,)

DAP Calling CALL D$11

Sequence DAC ARG2 (integer divisor)

(Return)

Method The numerator (an integer value) should be in the A-register upon
entrance to this subroutine. If the denominator, ARG2, is zero,
an overflow occurs and an error message is reported. If both
arguments are nonzero, the numerator is positioned in the A- and
B-registers and the division is performed. The results are ex-
amined for the special case (-32,768/-1) which is treated as an over-
flow. If the results are in the range of -32, 768 to + 32, 767, D$11
returns to the calling program with the quotient in the A-register
and the remainder in the B-register. The integer answer is in the
A-register.

Data Type of < implicit integer argument> / < integer argument> —» <integer

Arguments and result>

Results

Error Messages The error message "IZ'" is reported if a division by zero is at-,
tempted. The maximum value is output (-32, 768 if negative or
+32,767 if positive). A division of -32,768 by -1 also causes '"IZ"
to be reported; D$11 returns a value of + 32, 767, the maximum
value possible.

Other Routines ARG$, F$ER

Used

5-29 AGleo

D$11X

Purpose To divide two integers. (This routine requires the High-Speed
Arithmetic Option.)

DAP Calling | CALL D$1iX (or D$I11)
Sequence DAC ARG2 (integer divisor)
(Return)
Method See '"Method'" for D$11.
Data Type of < implicit integer argument> / < integer argument> —» < integer
Arguments and result>
Results
Error Messages See "Error Messages' for D$11.
Other Routines ARG$, F$ER
Used

©5-30 AGIl6

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines

Used

To divide a real number by an integer argument.

CALL D$21
DAC ARG?2 (an 1nteger value)
(Return)

This subroutine divides the real number in the A- and B-
registers by the integer ARG2. ARGZ is converted to a real
number by calling FLOAT, and the real division routine (D$22)
is called to perform the division.

< implicit real argument> /< integer argument> —» < real result>

FAT, H22, FLOAT, L$22, D$22

5-31 AGle

D$22

Purpose To divide two real numbers. (This subroutine has a high-
speed version, D$22X.)

See M$22, p. 5-69.

5-32 AGl6

PurEose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

DS$S22X

To divide two real numbers. (This subroutine requires the High-
Speed Arithmetic Option.)

CALL D$22
DAC ARG2 (the real divisor)
(Return)

This subroutine divides the real number in the A- and B-registers
(X) by the real argument, ARG2 (Y). The division is performed by
multiplying X by the reciprocal of Y, i.e., X*1/Y. Newton's
method for 1/Y is:

R(1) = R(0) * (2-R(0)*Y

where

R(0) = 1/H(Y), H(Y) being the high-order 15 bits of Y

X% (1/Y = X % R(1) = X R(0) » (2-R(0)*Y)

< implicit real argument> /< real argument> — < real result>

A "DZ'" error message is typed if division by zero is attempted.
A value of 0 is returned if the dividend is also 0. The signed
maximum value (+1.7E38) is returned if the dividend is nonzero.

An "SM'" error message is reported if an arithmetic overflow
occurs. The signed maximum value (x1.7E38) is returned.

A value of 0 is returned for an overflow.

N$22, F$ER

5-33 AGlo

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

To divide a complex number by an integer argument,

CALL D$51
DAC ARG2 (an integer value)
(Return)

This subroutine calls C$12 to convert the integer to a real
number and calls the complex/real division routine (D$52) to
perform the division.

< implicit complex argument> /< integer argument> — < complex
result>

FAT, H55, C$12, H$22, L$55, D$52

5-34 AGlé6

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines
Used

To divide a complex number by a real number.

CALL D$52
DAC ARG2 (a real number)
(Return)

This subroutine divides the complex value in the complex
accumulator (Y) by the real argument, ARG2.
Y/ARG2 = (A+B*1)/ARG2 = A/ARG2+ B*I, where Y = A+ B*I

< implicit complex argument> /< real argument> —» <complex
result>

FAT, H55, SUBS$, L$22, D$22, H$22, L$55

5-35 AGlé6

D$SS

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and

Results

Other Routines
Used

To divide two complex numbers.

CALL D$55
DAC ARG2 (complex divisor)
(Return)

The following algorithm is used to compute the operation of
dividing two complex numbers. The contents of the complex
accumulator (X) are divided by the contents of ARG2 (Y).

X/Y = (A+ B=*I)/(M+ N*I)

A+ B*I and Y = M+ N#I
(A+ B*I)%(M-N*I)/ (M+ N*I)%(M-NxI) -
(A+ B*I)*(M-N*I)/ (M##2+ N##2)

(A*M+ B*N+ B*M*I- AXN*I/ (M**2+N**2)

where X

non

(A*M+ B%N) / (M#%2+ N*#%2)4+ (I*(B*M-A*N))/ (M*%2+ N**2)

< implicit complex argument> /< complex argument> —» < complex
result>

FAT, H55, SUBS$, L$22, M$22, H$22, A$22, D$22, S$22,
N$22, L$55

5-36 AGl6

N

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

To divide a double-precision number by an integer argument,

CALL D$61
DAC ARG?2 (an integer value)
(Return)

This routine calls C$12 to convert the integer argument to a real
number and calls D$62 to perform the double-precision/real
division.

<implicit double -precision argument> /< integer argument> —

< double -precision result>

FAT, H66, C$12, H$22, L$66, D$62

5-37 AG16

D$62

PurEo se

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

—~
To divide a double-precision number by a real number.
CALL D$62
DAC ARG2 (a double-precision number)
(Return)
This subroutine calls DBLE to convert the real divisor (ARG-2)
to a double-precision number and calls the double-precision
divide routine (D$66). e
< implicit double-precision argument> /< real argument> —»
< double -precision result>
FAT, H66, DBLE, L$66, D$66
N
7~

5-38 AGle6

D$66

Purpose To divide normalized double-precision numbers.

See A$66, page 5-10.

5-39 AGl6

ESN

Purpose To calculate the value of an integer raised to an integer power,
(This subroutine has a high-speed version, E$11X,)

DAP Calling ' CALL E$11
Sequence DAC ARG2 (the integer exponent)
(Return)
Method The implicit integer argument in the A-register and the integer

exponent, ARGZ, are first examined for the combinations listed
below. If one of these combinations is found, the answer is loaded
in the A-register for return to the calling program.

Value in A-Register Exponent Answer

I 0 1

0 0 1

0 - +32767
0 + 0

1 J 1
-1 even 1
-1 odd -1

1 - . 0

Otherwise, the value of the expression is calculated and returned
in the A-register, The maximum or minimum value computed
may not exceed +32, 767 or -32, 768,

Data Type of <implicit integer argument> ** < integer argument> —» < integer
Arguments and result>

Results

Error Messages The error message "II' is reported and +32, 767 is returned if

overflow occurs or if I = 0 and J is negative (1/0). The value
-32,768 is returned if I £ -2, J is odd, and overflow occurs.

Other Routines ARG$, M$11, F$ER
Used

5-40 AGlé

ES11X

Purpose To calculate the value of an integer raised to an integer power,
(This subroutine requires the High-Speed Arithmetic Option,)

DAP Calling CALL ES$11X
Sequence DAC J (the integer exponent)
(Return)
Method See '"Method' for E$11,
Data Type of <implicit integer argument> ** <integer argument> — < integer
Arguments and result>
Results
Error Messages See "Error Messages'' for E$11,
Other Routines ARG$, F$ER
Used

5-41 AGlé

Purpose

DAP Calling
Seguence

Method

Data Type of

Arguments and

Results

Other Routines

Used

~u

To calculate the value of a real number raised to an integer power,

CALL E$21
DAC ARG2 (the integer exponent)
(Return)

A*¥ARG2 is evaluated by multiplying A by itself ARG2-1 times.
The sign is determined by the sign of the number in the A- and
B- registers and whether I is odd or even,

<implici~ real argument> *f <integer argument> — <real result>

ARGS$, M$22, D$22

5-42 AGl6

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

To calculate the value of a real argument raised to a real power.

CALL E$22
DAC ARG2 (the real exponent)
(Return)

X**ARG2 is evaluated as e**(ARG2*log(X)).

< implicit real argument> ** < real argument> —= < real result>

ARG$, ALOG M$22, EXP

5-43 AGl6

ES$S26

Purpose

DAP Calling

Sequence
Method

Data T‘XEe of
Arguments and
Results

Other Routines
Used

To calculate the value of a real number raised to a double-precision

power,

CALL E$26
DAC ARG?2 (the double-precision exponent)
(Return)

B**ARG2 is evaluated as e¥**ARG2*log(B)).

< implicit real argument> *% < double -precision argument> —

< double-precision result>

FAT, C26, H$66, DLOG, M$66, DEXP

AGl16

i

Purﬂse

DAP Calling
Sequence

Method

Data Type of

Arguments and

Results

Other Routines

Used

To calculate the value of a complex quantity raised to an integer
power,

CALL E$51
DAC ARGl (the integer exponent)
(Return)

The number in the complex accumulator is multiplied by itself
ARGI1-1 times,

<implicit complex argument> % < integer argument> — < complex

result>

FAT, H55, IABS, L$55, M$55, D$55

5-45 AGlé6

Purpose To raise a complex number to a real power.
DAP Calling - CALL E$52
Sequence DAC ARG2 (the real exponent)
(Return)
Method This subroutine converts the real argument (ARG2) to a complex

number by calling C$25 and calls E$55 to raise a complex number
to a comnplex power.

Data Type of < implicit complex argument> *% < real argument> —» < complex

Arguments and result>

Results

Other Routines FAT, H55, L$22, C$25, L$55, E$55
Used

5-46 AGl6

Purmse

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

ESSS

To raise a complex number to a complex power.

CALL E$55
DAC ARG2 (the complex exponent)
(Return)

If the absolute magnitude of the implicit complex number (A) is
zero, the routine is exited with an error message. Otherwise
the complex result is computed by the following algorithm:
CEXP(ARG2 * CLOG(A)).

< implicit complex argument> ** < complex argument> —» < complex
result>

The error message ""CE'" is reported if the absolute value of the
implicit argument in the complex accumulator is zero.

FAT, H55, CABS, F$ER, CLOG, C$25, M$55, CEXP

5-47 AGl6

ES$61

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and

Results

Other Routines

Used

~
To calculate the value of a double-precision number raised to an
integer power.,
CALL E$61
DAC ARG2 (the integer exponent)
(Return)
This routine checks for an even-numbered exponent, squares the ;
number in the double-precision accumulator, and divides the integer
argument (the exponent) by 2 until the exponent divided by 2 =],
If the exponent is odd, the computed value (DI-1) is multiplied by -
the original double-precision number before exiting,
<implicit double-precision argument> **< integer argument> —»
< double-precision result>
FAT, H66, L$66, D$66, D$11, M$11, M$66
~\
~

5-48 AGl6

ES$S62

Purpose To calculate the value of the number in the double-precision accumu-
lator raised to a real power.

DAP Calling CALL E$62
Sequence DAC ARG2 (the real exponent)
(Return)
Method B**ARG2 is evaluated as e **(ARG2*DLOG(B)), where B = the

contents of the double-precisioh accumulator,

Data Type of < implicit double -precision argument> *% < real argument> —
Arguments and < double -precision result>
Results

Other Routines FAT, H66, DLOG, M$62, DEXP
Used

5-49 AGl6

E$G66

Purpose

DAP Calling
Seguence

Method

Data Tme of

Arguments and

Results

Other Routines
Used

~~
To calculate the value of a double-precision value raised to a
double-precision result.
CALL E$66
DAC ARG2 (the double-precision exponent)
(Return)
B**%ARG2 is evaluated as e *¥(ARG2 * LOG (B)), where B = the a
contents of the double-precision accumulator.
< implicit double -precision argument> ** < double-precision argument>
— < double-precision result>
FAT, H66, DLOG, M$66, DEXP
~
N\

5-50 AGl6

FSAT

Purpose Argument transfer,

This subroutine is part of the Run-Time Library.

!

5-51 AGlé6

FSER

Purpose To print error messages,

This subroutine is part of the Run-Time Library.

5-52 AGlé6

Purpose To store (hold) the contents of the A- and B-registers in memory.

DAP Calling CALL H$22

Sequence DAC ARGlI (location in which the contents of the A- and B-
(Return) registers are to be stored)

Method The contents of memory at the location specified by the argument

address, ARGI, are replaced by the contents of the A- and B-
registers. The contents of the A- and B-registers remain un-
changed,

Data Type of This subroutine stores a real number in the argument address.

Arguments and
Results

Other Routines ARG$
Used

5-53 AGl6

PurRose

DAP Calling
Seguence

Method

Data Tme of
Arg:u_ments and

Results

Other Routines

Used

To hold (store) the contents of the complex accumulator in memory.

CALL H$55
DAC ARGI (location in which the contents of the complex
(Return) accumulator are to be stored)

The contents of memory at the location specified by the argument
address, ARGI, are replaced by the contents of the complex accumu- ..
lator. The contents of the accumulator remain unchanged.

This subroutiné stores a complex number in the argument address,

ARGS$, AC1, AC2, AC3, AC4

5-54 " AGI6

Purpose

DAP Calling
Sequence

Method

Data Types of
Arguments and

Results

Other Routines
Used

H$66

To hold (store) the contents of the double-precision accumulator
in memory.

CALL H$66
DAC ARG1 (location in which the contents of the double-
(Return) precision accumulator are to be stored)

The contents of memory specified by the argument address, ARGI,
are replaced by the contents of the double-precision accumulator.
The contents of the accumulator are unchanged.

This subroutine stores a double-precision number in the argument

address.

ARG$, AC1, AC2, AC3

5-55 AGl6

ISEQ

PurEose

DAP Calling
Seguence

Fortran Reference

Method

Data Type of
Arguments and

Results

To determine whether two integer expressions are equal,

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient
code, This subroutine may, however, be called if desired:

CALL I$EQ
(Return)

<integer expression> .EQ. < integer expression>

Note for Integer Relationals: Subroutines IEQ, IGE, IGT, ILE,
I$LT, and I$NE all expect that a Fortran programmer has used an
integer relational expression (I, .OP, I, where I is an integer .
expression and OP = EQ, GE, GT, LE, LT, or NE). The Fortran
compiler subtracts the two integer expressions (11-12) and leaves
the result in the A-register. If overflow occurs, the C-bit is set,

This subroutine, I$EQ, checks the C-bit and the result of the sub-
traction in the A-register for zero., If the A-register is zero and
the C-bit is not set, the relation is true and the A-register is set
to 1. Otherwise, the relation is false and the A-register is set to0,

The two integer arguments are compared and a logical 0 or 1 is
returned in the A-register.

5-56 AGl6

Purpose

DAP Calling
Seguence

Fortran Reference

Method

Data Txge of
Arguments and
Results

ISGE

To determine whether one integer expression is greater than or equal
to another integer expression.

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:

CALL I$GE

<integer expression> .GE, < integer expression>

See ''Note for Integer Relationals,' p. 5-56.,

This subroutine checks the C-bit and the result of the subtraction
A-register. If the C-bit is not set and the result in the A-register is
greater than or equal to 0, the relation is true and the A-register is
set to 1. Otherwise the relation is false and the A-register is set to
0.

The two integer arguments are compared and a logical 0 or 1 is
returned to the A-register.

5-57 AGIlé

ISGT

PurBose

DAP Calling
Seguence

Fortran Reference

Method

Data TXBe of

Arguments and
Results

~
To determine whether one integer expression is greater than another
integer expression.
This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:
CALL I$GT
(Return)
<integer expression> .GT. < integer expression> s
See '""Note for Integer Relationals,'" on p. 5-56. .
This subroutine checks the C-bit and the result of the subtraction in the
A-register, If the C-bit is not set and the result in the A-register is
a positive number, the relation is true and the A-register is set to 1.
Otherwise the relation is false and the A-register is set to 0.
The two integer arguments are compared and a logical 0 or 1 is
returned in the A-register.
~
~

5-58 AG16

N

PurEose

DAP Calling
Seguence

Fortran Reference

Method

Data TXEe of

Arguments and
Results

ISLE

To determine whether one integer expression is less than or equal to
another integer expression.

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:

CALL I$LE
(Return)

< integer expression> .LE. < integer expression>

See '"Note for Integer Relationals,'' p. 5-56.

This subroutine checks the C-bit and the result of the subtraction in
the A-register. If the C-bit is not set and the result in the A-register
is less than or equal to 0, the relation is true and a logical 1 is
returned in the A-register. Otherwise the relation is false and a 0

is returned in the A-register.

The two integer arguments are compared and a logical 0 or 1 is
returned in the A-register.

5-59 AG1l6

ISLT

Purgose

DAP Calling
Seguence

Fortran Reference

Method

Data TzEe of
Arguments and
"Results

To determine whether one integer expression is less than another.

This subroutine is not intended for use by DAP programmers. A
CAS instruction with appropriate jumps would be more efficitnt code.
This subroutine may, however, be called, if desired:

CALL I$LT
(Return)

<integer expression> ,LT. < integer expression>

See "Note for Integer Relationals,' on p. 5-56.

This subroutine checks the C-bit and the result of the subtraction
in the A-register. If the C-bit is not set and the result in the A-
register is negative, the relation is true and the A- register is set
to 1. Otherwise the relation is false and the A- register is set to 0.

The two integer arguments are compared and a logical 0 or 1 is
returned in the A-register.

5-60 AGl6

®

PurEose

DAP Calling
Seguence

Fortran Reference

Method

Data Tme of

Arguments and
Results

To determine whether two integer expressions are unequal.

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:

CALL I$SNE
(Return)

< integer expression> .NE, <integer expression™

See ''Note for Integer Relationals,' p. 5-56. This subroutine checks
the C-bit and the result of the subtraction in the A-register. If the
C-bit is not set and the result in the A-register is 0, the relation is
false and a 0 s returned in the A-register. Otherwise the relation
is true and the A-register is set to 1.

The two integer arguments are compared and a logical 0 or 1 is
returned in the A-register.

5-61 AG16

LS22

Purpose To load a real number into the A- and B-registers.
DAP Calling CALL L$22 or CALL REAL
Seguence DAC ARGl (a2 real number)
(Return)
Method This subroutine calls ARG$ to place the address of the argument,

ARG]I, into the index register. ARGI is then loaded into the A-
and B-registers.

Other Routines ARGS$
Used

5-62 AGl6

.

«

-

Purgose

DAP Calling

Sequence

Method

LS33

To form an INCLUSIVE OR from memory with the value in the
A-register.

CALL L$33

DAC ARG1 (an integer value)
(Return)

The value in the A-register is EXCLUSIVELY ORed, ANDed and
EXCLUSIVELY ORed again with the argument, ARGI.

5-63 AG16

LSSS

PurEose

DAP Ca,lling
Seguence

Method

Other Routines

Used

To load a complex number into the complex accumulator.

CALL L$55
DAC ARGI (a2 complex number)
(Return)

This subroutine calls ARG$ to place the address of the argument,
ARG]1, into the index register. ARGI is then loaded into the complex
accumulator,

ARG$, AC1, AC2, .AC3, AC4

5-64 v AGl6

3

[

PurBose

DAP Calling
Seguence

Method

Other Routines
Used

L$S66

To load a double-precision number into the double-precision
accumulator.

CALL L$66
DAC ARGI (a double-precision number)
(Return)

This subroutine calls ARG$ to place the address of the argument,
ARG]1, into the index register. ARGI is then loaded into the
double-precision accumulator.

ARG$, ACl, AC2, AC3

5-65 AGl6

MS1

Purpose

DAP Calling
Seguence

Method

Data Txge of
Arguments and

Results

Error Messages

Other Routines
Used

To multiply two integers. (This subroutine has a high-speed version,
M$11X.,)

CALL M$11
DAC ARG2 (integer multiplier)
(Return)

This subroutine multiplies the value in the A- register by the integer
argument, ARG2. If either or both are negative, a sign counter is
incremented and the negative value(s) are made positive. The multi-
plier, ARG2, is loaded into the B-register and shifted to place the
low-order bit of the multiplier in the C-register. The C-bit is
tested and if it is set, the multiplicand is added to the A- register.
The A- and B-registers are shifted together 1 bit, with the new low-
order bit going into the C-register, and so forth, for 16 shifts.
When these right shifts are completed, the bits are shifted back into
the A-register, one at a time, checking for overflow., The positive
or negative result is returned in the A- register.

< implicit integer argument> * < integer argument> — < integer result>
When an over/underflow occurs, the error message ""IM" is reported.

The subroutine returns with +32, 767 in the A- register if the answer
is positive, or -32,768 if it is negative.

ARG$, F$ER

5-66 AGl6

~

Purpose

DAP Calling
Seguence

Method

Data Txge of

Arguments and
Results

Error Messages

Other Routines
Used

MS$11X

To multiply two integers. (This subroutine requires the High-Speed
Arithmetic Option.)

CALL M$11
DAC ARG2 (an integer value)
(Return)

This subroutine multiplies the value in the A-register by ARG2,
The result is then examined for over/underflow (see '""Error
Messages')., If the result is in the proper range, the signed result
is returned to the calling program in the A-register.

<implicit integer argument > * <integer argument> — <integer result>

See "Error Messages' for M$11.

ARG$, F$ER

5-67 AG16

MS21

Purpose To multiply a real number by an integer.
DAP Calling CALL M$21
Seguence . DAC ARG2 (an integer value)
(Return)
Method This subroutine calls FLOAT to convert the integer argument to

a real number and calls the real multiplication routine (M$22).

Data Type of <implicit real argument > * <integer argument> — <real result>

Arguments and

Results

Other Routines FAT, H22, FLOAT, M$22
Used

5-68 AGl6

/N

PurBose

DAP Calling
Seguence

Method

Data Ty_Ee of

Ar‘uments and
Results

Error Messages

Other Routines
Used

To multiply or divide two real numbers. (This subroutine has a
high-speed version, M$22X.)

CALL M$22 (or D$22) The multiplicand (M$22) or dividend
DAC ARG2 (multiplier (D$22) must be in the A- and B-
(Return) or divisor) registers. The sign, exponent, and

most significant bits will be in the
B-register.

X*Y = (X*2%%B)*(Y*2%*C), where X = the value in the A- and B-
registers
Y = ARG 2

= ABS(X)*ABS(Y)*2:%%(BC)

ABS(X)*ABS(Y) = X(1)*¥Y(1)+(X(1)*Y(2)+X(2)*Y(1))*2%%-15

The most significant part of the product is H(X(1)*Y (1)) and
the least significant part is L(X(1)*=Y(1))+H(H(1)*Y(2))+H(X(2)*
Y(1))*%2%%-15,

Newton's method for 1/Y is R(1) = R(0)*(2-R(0)*Y), where
R(0) = 1/H(Y), H(Y) being the high-order 15 bits of Y.

X(1/Y) = X*R(1) = X*R(0)*(2-R(0)*Y).

< implicit real argument> * < real argument> — < real result>

Multiplication - If there is underflow, a value of zero is returned
with no error message.

If there is overflow, an '"'SM' error message is reported and the
maximum value {(2%*128)-1) is returned in the A- and B-registers.

Division - If division by zero is attempted, a ""DZ' error message

is reported and the result in the A- and B-registers is undefined.

If the divisor is unnormalized, an ''SD'" error message is reported
and the result in the A- and B-registers is undefined.

N$22, ARG$, F$ER

5-69 AGl6

MS$S22X

Pureose

DAP Calling
Seguence

Method

Data Tme of
Arguments and

Results

Error Messages

Other Routines
Used

To multiply two real numbers.

CALL M$22
DAC ARG2 (a real number)
(Return)

X*Y = (X%2*%%B)*(Y*2%**C), where X = the value in the A- and B-
registers
Y = ARG2
= ABS(X)*ABS(Y)*2%%(BC)

ABS(X)*ABS(Y) = X(1)*Y(1)*(X(1)*Y(2)+X(2)*Y(1))*2%%- 15

The most significant part of the product is H((X(1)*Y(1)) and the
least significant part is L(X(1)*Y(1))+H(H(1)*Y(2))+H(X(2)* Y(1))
*2%%-15,

<implicit real argument> * < real argument> —» < real result>

Underflow - A value of zero is returned with no error message.

Overflow - An ""SM'" error message is reported and a signed maxi-
mum value (1. 7E38) is returned.

F$ER

5-70 ' AGIl6

g

PurEose

DAP Calling
Seguence

Method

Data Type of
Arguments and

Results

Other Routines
Used

MS$S1

To multiply a complex number by an integer.

CALL M$51

DAC ARG2 (an integer value)
(Return)

This subroutine calls C$12 to convert the integer argument to a

real number and calls the complex/ real multiplication routine
(M$52).

<implicit complex argument> * < integer argument> —» < complex

result>

FAT, H55, C$12, H$22, L$55, M$52

5-71 AG16

Mmss2

Purpose To multiply a complex number by a real number.
DAP Calling CALL M$s2
Sequence DAC ARG2 (a real number)

(Return)
Method Y*X = (A+B*I)*X = A*X+(B*X)*I

where Y = A+B*I (in the complex accumulator)

X = ARG2

Data Type of - < implicit complex argument> * < real argument> —» < complex result>
Arguments and
Results
Other Routines FAT, H55, SUB$, L$22, Ms$22, H$22, L$55
Used

5-72 - AG16

Pureose

DAP Calling
Seguence

Method

Data Tm. e of

»Arguments and
Results

Other Routines
Used

To multiply complex numbers.

CALL M$55
DAC ARG?2 (a complex value)
(Return)

This routine multiplies the contents of the complex accumulator (X)
by the value in ARG2 (Y).

X*Y = (A+B*I) (M+N*I) = A*M-B*N+({A*N+B*M)*I

where X = A+B*I and Y = M+N*L,

< implicit complex argument> * < complex argument> — < complex
result>

FAT, H55, SUB$, L$22, M$22, H$22, S$22, N$22, A$22, L$55

5-73 AG16

Pureose

DAP Calling
Seguence

Method

Data nge of

Arguments and

Results

Other Routines
Used

To multiply a double-precision number by an integer argument.

CALL M$61
DAC ARG2 (an integer value)
(Return)

This subroutine calls C$12 to convert the integer argument to a

real number and calls the double-precision/ real multiplication
routine (M$62),

< implicit double -precision argument> * < integer argument> —»

< double -precision result>

FAT, H66, C$12, H$22, L$66, M$62

5-74

AGl16

MS$62

Purpose To multiply a double-precision number by a real number.
DAP Calling CALL M$62
Sequence DAC ARG2 (real multiplier)
(Return)
Method This subroutine calls DBLE to convert the real multiplier to a

double-precisicn number and calls the double-precision multiply
routine (M$66).

Data Type of < implicit double-precision argument> * < real argument> —
Arguments and < double-precision result>
Results

Other Routines FAT, H66, DBLE, M$66
Used

5-75 AG16

Purgose

See A$66, on p, 5-10,

To multiply normalized, double

5-76

-Precision numbers,

AG16

PurEose

DAP Calling
Seguence

Method

Data TzEe of

Arguments and

Results

' To determine the TWOs complement of a real number.

CALL N$22
DAC ARGI (a real number)
(Return)

The C-bit is preset on entrance to this routine to provide a true TWOs
complement if the low-order word is found to be zero. The C-bit is
reset when this is not the case, and the A- and B-registers are TWOs
complemented normally.

The TWOs con"xplement of the real argument is computed and the
routine exits with the the real result in the A- and B-registers.

5-77 AGl6

3

PurBose

DAP Calling
Seguence

Method

To obtain the complement of a logical value.

CALL N$33
(Return)

The least significant bit of the argument in the A-register is
logically complemented, changing its value from true to false
(1 to 0) or false to true (0 to 1).

5-78 AG16

PurEose

DAP Calling
Seguence

Method

Data TXEe of

Arguments and
Results

Other Routines
Used

NS$SS

To negate a complex quantity.

CALL N$55
(Return)

The signs of the real part and the complex part of the complex
number are negated. The result is in the complex accumulator.

The complex argument is negated and the subroutine exits, with the

complex result in the complex accumulator.

H$55, SUB$, L$22, N$22, H$22, L$55

5-79 AG16

Purgose

DAP Calling
Seguence

Method

Data Tme of
Arguments and
Results

Other Routines
Used

To negate a double-precision number.

CALL N$66
(Return)

This subroutine negates the value in the double-precision accumu-
lator. The double-precision word is effectively TWOs complemented,
as follows:

1.

3.

The lowest order word, AC3, word 3, is tested for zero. If it
is not zero, the word is TWOs complemented. If it is zero, the
C-Dbit is set.

AC2, word 2, is tested for zero. If it is not zero, the word is
ONEs complemented and the C-bit is added. If it is zero and the
C-bit is set, no action is taken. If the C-bit is not set, the word
is ONEs complemented.

ACl, word 1, is ONEs complemented, and the C-bit, if set, is
added. The negated result is left in the double-precision accumu-
lator.

The double-precision argument is negated and the routine exits with
a double-precision result in ACI, AC2, and AC3.

ACl, AC2, AC3

5-80 AG16

L]

Pureose

DAP Calling
Seguence

Fortran Reference

Method
Data Tme of

Arguments and
Results

RSEQ

To determine whether two integer expressions are equal.

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:

CALL R$EQ
(Return)

< real or double-precision expression> ., EQ. < real or double-
precision expression>

Note for Real or Double-Precision Relationals:

Subroutines REQ, RGE, RGT, RLE, R$LT, and R$NE all expect
that a Fortran programmer has used a real or double-precision
relational expression (R, or D, .OP. R2 or D_), where R is a real
expression, D is a double-precision expression, and OP = EQ, GE,
GT, LE, LT, or NE. The Fortran compiler subtracts the two
expressions (Rl or D. - R, or DZ) and leaves the characteristic and
most significant part of the result (the contents of AC1 for double-
precision expressions) in the A-register. Note that this result in the
A-register can be zero only if the entire double-precision number
(AC1-AC3) is zero, since the number is normalized and any nonzero
values in AC2 and AC3 are moved to AC1.

This subroutine, R$EQ, checks the result of the subtraction in the
A-register for 0. If zero, the relation is true and the A-register is
set to 1. Otherwise the relation is false and the A-register is set
to 0. Caution: Two expressions that are mathematically equal may
not be exactly equal when compared if they were calculated in a
different manner.

Two real or double-precision numbers are compared and a logical 0
or 1 is returned in the A-register.

5-81 AG16

RSGE

Purgose

DAP Calling
Seguence

Fortran Reference

Method

Data TzBe of

Arguments and
Results

To determine whether one real or double-precision expression is
greater than or equal to another real or double-precision expression.

This subroutine is not intended for use by a DAP programmer., A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:

CALL R$GE
(Return)

< real or double-precision expression> ,EQ, < real or double-
precision expression>

See '"Note for Real or Double-Precision Relationals', on p. 5-81.
This subroutine checks the result of the subtraction in the A- register
for a value greater than or equal to zero and sets the A- register to

1 if it finds such a value. Otherwise the relation is false and the
A-register is set to 0.

Two real or double-precision numbers are compared and a logical
value of 0 or 1 is returned in the A-register.

5-82 AGIlé

7\

Purgose

DAP Calling
Seguence

Fortran Reference

Method
Data Txee of

Arguments and
Results

RS$SGT

To determine whether one real or double-precision number is greater
than another real or double-precision number.

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:

CALL R$GT
(Return)

< real or double-precision expression> ,GT. < real or double-
precision expression>

See '""Note for Real or Double-Precision Relationals,' on p. 5-81.

This subroutine checks the result of the subtraction in the A-register.
If the value in the A-register is greater than 0, the relation is true and
the A-register is set to 1. Otherwise the relation is false and the
A-register is set to 0.

Two real or double-precision arguments are compared and a logical
0 or 1 is returned in the A-register.

5-83 AG16

RSLE

PurEose

DAP Calling
Seguence

Fortran Reference

Method

Data TZBe of
Arguments and

Results

To determine whether one real or double-precision expression is less
than or equal to another real or double-precision expression.

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:

CALL R$LE
(Return)

<real or double-precision expression>. LE, < real or double -
precision expression>

See '"Note for Real or Double-Precision Relationals, " p, 5-81,

This subroutine checks the result of the subtraction in the A-register
for a value less than or equal to 0 and sets the A-register to 1 if it
finds a value in that range, Otherwise, the relation is false and the
A-register is set to 0,

Either argument may be real or double-precision and a logical 0 or
1 is returned in the A-register.

5-84 AG16

-

N

PurBose

DAP Calling
Seguence

Fortran Reference

Method

Data TzEe of

Arguments and
Results

RSLT

To determine whether one real or double-precision expression is less
than another real or double-precision expression.

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient code.
This subroutine may, however, be called if desired:

CALL RS$LT
(Return)

<real or double-precision expression> , LT, < real or double-
precision expression>

See '"Note for Real or Double-Precision Relationals,' p. 5-81.

This subroutine checks the result of the subtraction in the A-register
for a value greater than or equal to 0 and sets the A-register to 0 if it
finds such a value. Otherwise, the relation is true and the A-register
is set to 1.

The two real or double-precision arguments are compared and a
logical 0 or 1 is returned in the A-register.

5-85 AGl6

Purpose

DAP Calling
Sequence

Fortran Reference

Method

Data Type of

Arguments and
Results

To determine whether two real or double-precision expressions are
unequal,

This subroutine is not intended for use by a DAP programmer. A
CAS instruction with appropriate jumps would be more efficient
code, This subroutine may, however, be called if desired:

CALL R$NE
(Return) .

<real or double-precision expression> .NE. < real or double-
precision expression>

See "N for Real or Double-Precision Relationals, " page 5-81,
This subroutine checks the result of the subtraction in the A-register
for 0, if zero, the relation is false and the subroutine exits with a

0 in the A-register, Otherwise the relation is true and the A-
register is set to 1, Caution: Two expressions that are mathemati-
cally equal may not be exactly equal when compared if they were
calculated in a different manner.

Two real or double-precision arguments are compared and a logical
0 or 1 is returned in the A-register,

5-86 AGl16

Purpose

DAP Calling
Sequence

Method

Data Tx;gé of

Arguments and

Results

Other Routines

Used

S$21

To subtract an integer from a real number,

CALL S$21
DAC ARG?2 (an integer value)
(Return)

This subroutine converts the integer argument to a real number by
calling FLOAT and calls the real subtraction routine (S$22).

<implicit real argument> — < integer argument> — < real result>

FAT, H22, FLOAT, S$22, N$22

5-87 AG16

Purpose

See A$22, page 5-3,

To subtract real numbers,

5-88

AGlé

"

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines

Used

S$51

To subtract an integer argument from a complex number,

CALL S$51
DAC ARG?2 (an integer value)
(Return)

This subroutine calls C$12 to convert the integer argument to a real
number and calls the complex/real subtraction routine (S$52),

< implicit complex argument - — < integer argument> — < complex

result>

FAT, H55, C$12, H$22, L$55, S$52

5-89 AGlo6

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and

Results

Other Routines
Used

To subtract a real number from a complex number to obtain a com-

plex result,

CALL S$52
DAC ARG2 (a real number)
(Return)

Y-X = A+B*I-X = (A-X)+B*I
where Y = A+B*I, X = ARG2

< implicit complex argument> — <real argument>

FAT, H55, L$22, S$22, H$22, L$55

5-90

— < complex result>

AGl6

w

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines

Used

S$55

To subtract two complex numbers,

CALL S$55
DAC ARG2 (the complex subtrahend)
(Return)

This subroutine subtracts ARG2(Y) from the value in the complex
accumulator (X):

X - Y = (A+B*I) - (M+Nx*I) = A*M+(B*N)*I
where X = A+B*I, Y = M+N*I

<implicit complex argument> — <complex argument™* — < complex
result>

FAT, H55, SUBS$, L$22, S$22, N$22, H$22, L$55

5-91 AGl6

S$$61

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and

Results

Other Routines
Used

To subtract an integer argument from a double-precision number.

CALL S$61
DAC ARG2 (an integer value)
(Return)

This subroutine calls C$12 to convert the integer argument to a
real number and calls the double -precision/real subtraction routine
(S5$62).

[

< implicit double -precision argument> — < integer argument> —
< double-precision result>

FAT, H66, C$12, H$22, L$66, S$62

5-92 AGlé6

Purpose To subtract a real argument from a double-precision number,
DAP Calling - CALL S$62
Sequence DAC ARG2 (a real number)
(Return)
Method This subroutine calls DBLE to convert the real argument to a double-

precision number and enters the double-precision subtraction
routine (S$66).

Data Type of < implicit double-precision argument> — < real argument> —
Arguments and < double -precision result>

Results

Other Routines FAT, H66, DBLE, S$66, N$66

Used

5-93 AGIL6

Purpose

See A$66, page 5-10,

To subtract normalized, double-precision numbers.

5-94

AGlé6

-

S1Z$

Purpose To calculate an array size,

See SUB$, page 5-97.

5-95 AGl6

SNGL

Purpose

See C$62, page 5-25,

To convert a double-precisicn number to a real number,

5-96

AGlé6

PurEose

DAP Calling
Sequence)

Method

sSuUBS

To calculate the address of a referenced array element or to calcu-
late the array size.

CALL SUB$

DAC or DAC* ARRAY TABLEI
DAC or DAC* SUBSCRIPT 1
DAC or DAC* SUBSCRIPT 2

DAC or DAC#* SUBSCRIPT N
(Return)

or
CALL SIZ$

DAC or DAC* ARRAY TABLE2
(Return)

ARRAY TABLE] Layout

DAC or DAC* ARRAY

OCT L (number of words per array element)
DEC DIMENSION 1

DEC DIMENSION 2

DEC DIMENSION N
OCT O (end of dimension list)

ARRAY TABLE2 Layout

DAC or DAC* ARRAY

OCT KEY

OCT or DAC* DIMENSION 1
OCT or DAC* DIMENSION 2

OCT or DAC* DIMENSION N or OCT ARRAY SIZE
or omitted

The KEY bit pattern is CVDDDDDDDDDDDLLL, where

C = 0 - no array bounds checking

C = 1 - array bounds checking
V = 0 - last word of array table is array size
V = 1 - last word of array table is dimension

If C=0 and V = 0, the last dimension word of the array table is
omitted.

D = dimensionality - limited to 2047
L = number of words per array element

5-97 AG16

SUBS cont.

Error Messages

Other Routines
Used

Note that L is determined by the data type of the array as follows: ’

Data Type of Array
L=

- integer or logical
- real

- double-precision
- complex

» W -~

Let S denote the array starting address, L the number of words per
array element, S(I) the Ith subscript value, and D(I) the Ith dimension
for an N-dimensional array A where N > 1,

The address of the array element A(S(1), S(2), .. -S(N) is given by

S+ L{..., (S(N)-1)*D(N-1) +...+ (S(2)-1)*D(1) + (S(1)-1)

The error message ""AO" (array overflow) is reported if the array
element referenced is outside the bounds of the array. Only the final
array element referenced is checked for legality, not individual sub-
script values.

M$11, F$ER

5-93 AG16

i

i

Z$80

PurEose To clear (zero-out) the exponent of the variable in the double-
precision accumulator.

DAP Calling CALL Z%$80
Sequence : (Return)
Method Extract the value in AC1 and replace the characteristic (base 2) in

bits 2-9 with zeros.

Other Routines ACl1
Used

5-99 AGlé6

APPENDIX A
TAPE CONTENTS

MAGNETIC TAPE 70185015000A (LIBRARY SOURCES)

This tape consists of the concatenation of individual source magnetic tapes of the following

programs in the order listed:

NAME ¢ DOC NO, REV
LTCSMT 70185288000
LicLl 70185285000
LTCcL2S 70185286000
LTCL2H 70185287000

Csls 70185249000
ASS51 70185254000
Css1 70185255000
0s51 70185256000
M$s 1 70185257000
5851 70185258000
C$52 70185258000
E$52 70185259000
Esss 70185260000
As$61 70185261000
D61 70185262000
M361 70185263000
S%61 70185264000
E$62 70180053000
ES6l 70180052000
Es2¢ 70182582000
ES66 70180054000
DSQRT 70182580000
0Cos 70180055000
DSIN 70182583000
DExp 701825381000
DLOG10O 70180051000
OLog 701825719000

DLOG2 70182914000
DATAN2 70180056000
DATAN 70182584000

NOOTNTNONNANDNNONNANDONANATONNANTNAI>PIPEE>>BP>>P>P2>>>>>>

DMOD 701825488000
DSIGN 70182589000
DABs 70182587000
A$62 70180037000
S%62 70180038000
M362 70180039000
D%62 70180040000
C3le 70180059000
DBLE 70180058000
CSQRT 70182592000
cCos 70180066000
CSIN 70182595000
CcLoG 70182591000
Ckxp 70182593000

A-1) AGl6

CAgs
Ess]
ASS2
$852
MSSs2
Ds$s2
A3$55
S35s
MSss
Dsss
CONyG
Cs2s
CMPL X
N$Ss
CS$EQ
CSNE
DMAx1
DMIN]
DINT
2980
Asg}
C$61
H$55
AlMAG
L$55
A$2]1
0s21
M$21
5821
IAND
IXOR
ITEST
ICLR
ISET
ISHFT
I0R
NOT
I13GE
18GT
ISLE
I $NE
IsLY
13€EQ
R$EQ
R3IGE
R$GT
R$LE
RSLT
ROSNE
AS$6e
AS66X
H366
Cd26
MAX0
MAX 1
MINO
MIN]
TANH
SORT
SARTX
SIN,COS
ATAN
£$21
€322
ALOG
ALOGX
EXp

70182596000
70182594000
70180041000
70180042000
70180043000
70180044000
70182544000
70180093000
70182%45000
70180034000
70182598000
70180068000
70182597000
70180069000
70185276000
70185277000
70182585000
70182586000
70180850000
70180851000
70180852000
70182554000
70180860000
70180858000
70180859000
70185250000
70185251000
70185252000
70185253000
70185266000
70185247000
70185046000
70185047000
70185048000
70185268000
70185269000
70185284000
70185270000
70185271000
70185272000
70185273000
70185274000
70185275000
70185278000
70185279000
70185280000
70185281000
70185282000
70185283000
70180853000
70180979000
70180855000
70180857000
70182548000
70182549000
70180649000
70182551000
70182565000
70182560000
70180681000
70182563000
70182564000
70182562000
7018004500¢
701825459000

70180682000

70182561000

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
A
()
D
C
C
C
C
C
o]
C
A
A
A
A

A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
C
C
C
D
(M)
8
D
)]
C
C
0
D
C
C
€
C
D

AGlé

Esl)
E311X
ABS
Ci62
AMOD
L$66
AINT
Nd66
DIM
SIGN
IFIX
FLOAT
(312
($21
LOC
Cs81
ISTORE
N$33
IFETCH
1ABS
MOpD
SUBs
IDIM
A$22
M$22
AS22x
M3$22Xx
D$22x
ISIGN
L$22
H$22
N$22
SLITE
M3]1]
D%11
M$11x
D311x
OVERFL
F3AT
L$33
ARGs
AC1

PAPER TAPE 70185012000A (FTNLBI1)

70182547000
10180684000
70182570000
70180884000
70182572000
70180854000
70182571000
70180856000
701825713000
70182574000
70182553000
70180062000
70182515000
70182558000
70181962000
70180882000
70181982000
70180090000
70181983000
70182552000
70182555000
70185150000
70182556000
70182536000
70182537000
70181805000
70181806000
70181804000
70182557000
70182534000
70182535000
70180097000
70182599000
70180035000
70182546000
70180685000
70180686000
70180894000
70180071000
70180065000
70180072000
70180717000

NONTNDBDZTOUMNAODONDOETMANI>PONATNAETNADMANANANNNNNAMAST O

This tape consists of the concatenation of individual object paper tapes of the following

programs in the order listed (each object has been assembled via the DAP/700 Macro Assem-

bler and may be linked to a calling program by the Linkage Editor):

NAME :
Cs1s
AS$S51
Cssy
D$s1
M$5]
$$51
C$52
Ess52
ESSS
AS61
Dse1
MS$61
$%61

00C NO, REV

70185249000
70185254000
70185255000
70185256000
70185257000
70185258000
70185258000
70185259000
70185260000
70185281000
70185262000
70185263000
70185264000

> >>>

AGlé6

Ess2
Esel
Es2¢
Esse
DSQRT
0Cos
DSIN
DExp
DLOG10
bLoa
DLOG2
DATANZ2
DATAN
DMoD
DSIGN
DABS
AS62
5862
M$62
D$62
Csle
‘DBLE
CSQRT
CCos
CSIN
cLoG
CExp
CABS
Ess)
AS$S52
5852
M$52
D852
ASS5S
$855
MS55
Dsss
CONJG
cs2s
CMPLX
N$S55
CSEQ
CSNE
DMAX1
DMIN1
DINT
2%80
AS81
C61
H$55
AIMAG
L$55

PAPER TAPE 70185013000A (FTNLB2S)

70180053000
70180052000
70182582000
70180054000
70182580000
70180055000
70182%83000
70182581000
70180051000
70182579000
70182914000
70180056000
70182584000
70182588000
70182589000
70182587000
70180037000
70180038000
70180039000
70180040000
70180059000
70180058000
70182592000
70180066000
70182595000
70182591000
70182593000
70182596000
70182594000
70180041000
70180042000
70180043000
70180044000
70182544000
70180093000
70182545000
70180034000
70182598000
70180068000
70182597000
70180069000
70185276000
70185277000
70182585000
70182586000
70180850000
70180851000
70180852000
70182554000
70180860000
70180858000
70180859000

DONNNNNTOENNNNNNNNNNNANNNNDONTNHANNNNNNNNNNTONNATSNANNANNON

This tape consists of the concatenation of individual object tapes of the following programs

in the order listed (each object has been assembled via the DAP/700 Macro Assembler and may

be linked to a calling program by the Linkage Editor):

NAME
AS21
Ds21
MS$21
ss21

pOC NO, REV
70185250000 A
70185251000 A
70185252000 A
70185253000 A

A-4 AGl6

IAND
IXOR
1TESY
ICLR
ISET
ISHFT
10R
NOY
I3GE
1367
ISLE
I$SNE
IsLTY
ISEQ
RSEQ
R$SGE
R$GT
RSLE
R$LT
RSNE
ASse -
H$ 66
C%26
MAX0
MAX1
MINO
MIN1
TANH
SORT
SIN,COS
ATAN
€321
Es22
ALOG
EXp
E$l1
ABS
C%62
AMoOD
L5366
AINT
N$66
DIM
SIGN
IFIX
FLOAT
C$12
Cs21
LOc¢
Cs$81
ISTORE
N$33
IFETCH
1ABS
MOD
SUBsg
IDIM
A$22
M$22
ISIGN
L$22
H$22
N$22
SLITE
M$11
D$11
OVERFL

70185266000

70185267000

7018%046000

T0185047CT0
70185048000

701852680C0
70185269000
701852384000
70185270000
70185271000
70185212000
70185273000
70185274000
70185275000
70185278000
70185279000
7018%23000¢0
7018531000
70185282000
70185283000
70180853000
70180855000
70180857000
70182548000
70182549000
70180649000
70182551000
70182545000
70182560000
70182563000
70182564000
70182562000
701800450090
70182559000
70182561000
70182547000
70182570000
70180884000
70182572000
70180854000
70182571000
70180856000
70182573000
70182574000
70182553000
70180062000
70182575000
70182558000
701819462000
70180882000
70181982000
70180090000
70181983000
70182552000
70182555000
70185150000
70182556000
70182536000
70182537000
70182557000
70182534000
701825135000
7018004970900
70182599000
70180035000

70182546000

70180894000

>P>rrerP>rrPr >
NOTMNUDONMIAIN>ONEATADMNAANANANNAAMAOSCMANOONTUCOTTONANT>P>E >>>>>

AGl6

FSAT
L$33
AkGs
AC)

PAPER TAPE 70185014000A (FTNLB2H) FOR HIGH-SPEED ARITHMETIC OPTION

70180071000 D
7018006%000 C

70180072000
70180717000

C
C

This tape consists of the concatenation of individual object paper tapes of the followi~g

programs in the order listed (each object has been assembled via the DAP/700 Macro Assem-

bler and may be linked to a calling program by the Linkage Editor):

NAME ¢
AS21
Ds21
M$21
5821
IAND
IXOR
1TEST
ICLR
I1SETY
ISHFY
I0R
NOT
13GE
15GT
ISLE
1SNE
ISLT
1%€a
R$EQ
RSGE
R$GT
RSLE
RSLT
RSNE
AS66X
H$66
(326
MAX0
MAX1
MINO
MINL
TANH
SORTX
SIN,.COS
ATAN
€s21
E$22
ALOGX
Exp
ES11X
ABS
Cd62
AMOD
LS66
AINT
N$66
DIM
SIGN
IFIX
FLOAT

DOC NO,
70185250000
70185251000
70183252000
70185253000

70185266000

70185267000
70185046000
70185047000
70185048000
70185268000
70185269000
70185284000
70185270000
70185271000
70185272000
70185273000
70185274000
70185275000
70185278000
70185279000
70185280000
70185281000
70185282000
70185283000
70180979000
70180855000
70180857000
70182548000
70182549000
70180649000
70182551000
70182565000
70180681000
70182563000
70182564000
70182562000
70180045000
70180682000
70182561000
70180684000
70182570000
70180884000
70182572000
70180854000
70182571000
70180856000
70182573000
70182574000
70182553000
70180062000

A-6

REV

NNANNONNNNMADONNNDONODOTTOONNNAEPIEPPP>PEP2>>>P>>>PP>PP>r>»

AGl6

Csl12
C$21
LOC
cs81
ISTORE
N$33
IFETCH
1ABS
MOD
SUBs
IDIM
A%$22x
M$22X
D$22Xx
ISIGN
L$22
H$22
N$22
SLITE
MS11X
DS11x
OVERFL
FSAT
L$33
ARGS
AC)

70182575000
70182558000
70181962000
70180882000
70181982000
70180090000
70181983000
70182552000
70182555000
70185150000
70182556000
70181805000
70181806000
70181804000
70182557000
70182534000
70182535000
70180097000
70182599000
70180685000
70180686000

-+ 70180894000

70180071000
70180045000
70180072000
70180717000

NNANDNDTEMADONTODA>PONDNATNADB MN

AGlé6

APPENDIX B
MATHEMATICAL ROUTINES

Function Routine
Complex

Absolute value CABS
Add A$55
Add integer argumentl A$51
Add real argument A$52
Conjugate CONJG
Convert imaginary part to real AIMAG
Convert to integer C$%51
Cosine CCOS
Divide D$55
Divide by integer argument D$61
Divide by real argument D$62
Exponential, base e CEXP
Load L$55
Logarit‘hm, base e CLOG
Multiply M$55
Multiply by integer argument M$51
Multiply by real argument M$52
Negate N$55
Raise to integer power E$51
Raise to real power E$52
Raise to complex power E$55
Sine CSIN
Square root CSQRT
Store (hold) H$55
Subtract S$55
Subtract integer argument 5%$51
Subtract single-precision argument S$52

B-1 AGlo6

Function

Double-Precision

Absolute value

Add

Add integer argument

Add single-precision argument
Add integer to exponent
Arctangent, principal value
Arctangent, X/Y '

Clear (zero) exponent
Convert exponent to integer
Convert to integer

Convert to single-precision
Cosine

Divide

Divide by integer argument
Divide by real argument
Exponential, base e

Load

Logarithm, base e
Logarithm, base 2
Logarithm, base 10
Maximum value

Minimum value

Multiply

Multiply by integer argument
Multiply by real argument
Negate

Raise to double-precision power
Raise to integer power
Raise to real power
Remainder

Sine

Square root

Store (hold)

Subtract

Subtract integer argument

Subtract real argument

Transfer sign of second argument to first

Routine

DABS
A$66
A$61
A$62
A$81
DATAN
DATAN2
Z$80
Cc$81
Cc$61
Cc$62
DCOs
D$66
D$61
D$62
DEXP
L$66
DLOG
DLOG?2
DLOGI10
DMAXI1
DMINI
M$66
M$61
M$62
N$66
E$66
E$61
E$62
DMOD
DSIN
DSQRT
H$66
S$66
S$61
S5$62
DSIGN

AGl6

Real

Function

Truncate fractional bits

Truncate fractional bits and convert
to integer

Absolute value

Add

Add integer argument
Arctangent, principal value
Arctangent, X/Y

Convert pair to complex
Convert to complex format
Convert to double-precision
Convert to integer

Divade

Divide by integer argument
Exponential, base e
Hyperbolic tangent

Load

I.ogarithm, base e
Logarithm, base 10
Maximum integer value
Maximum value

Minimum integer value
Minimum value

Multiply

Multiply by integer argument
Positive difference

Raise to double-precision power
Raise to integer power
Raise to real power
Remainder

Sine, cosine

Square root

Store (hold)

Subtract

Subtract integer argument

Transfer sign of second argument to first

Truncate fractional bits

Routine

DINT

IDINT

ABS
A$22
A$21
ATAN
ATAN2
CMPLX
C$25
Cc$26
c$21
D$22
D$21
EXP
TANH
L$22
ALOG
ALOGI10
MAX1
AMAX]1
MIN1
AMINI1
M$22
Ms$21
DIM
E$26
E$21
E$22
AMOD
SIN, COS
SQRT
H$22
S$22
s$21
SIGN
AINT

AG16

Truncate fracional bits and convert

to integer IFIX, INT
TWOs complement N$22
Absolute value IABS
Convert to complex C$15
Convert to double-precision C$16
Convert to real (Fortran-generated) FLOAT
Convert to real Cs$12
Divide D$11
Logically AND integer IAND
Logically EXCLUSIVE OR integer IXOR
Logically OR integer IOR
Maximum value AMAXO
Maximum integer value MAXo0
Minimum value AMINO
Minimum integer value MINO
Multiply M$1l1
Positive difference) IDIM
Raise to integer power E$11
Remainder MOD
Shift integer ISHFT
Transfer sign of second argument to first ISIGN
Logical
Complement N$33 ;
OR with A-register L$33 i
Relationals
Equal to C$EQ
I$EQ
R$EQ
Greater than I$GT
R$GT
Greater than or equal to I$GE
R$GE
Less than ISLT
R$LT
Less than or equal to I$LE
R$LE
Not equal to C$NE
I$NE
R$NE

B-4 AGl6

APPENDIX C
SUBROUTINE FUNCTIONS

INTRINSIC AND EXTERNAL FUNCTIONS

Mathematical and Trigonometric Functions

Name

SIN
DSIN
CSIN

CcOS
DCOS
CCOS

ATAN
DATAN
ATAN2
DATANZ2

TANH

SQRT
DSQRT
CSQRT

EXP
DEXP
CEXP

ALOG
DLOG
CLOG

ALOGI10
DLOG2
DLOG10

ABS
IABS
DABS
CABS

AMOD
MOD
DMOD

AINT
DINT
IDINT
IFIX
INT

Argument
Data Type

Result
Data Type

Function

THWOUX U %D QU"% DUW QOUYW QU Q%W Ww Uwdw Obw QAUw

mEEmEx DE X IU-X DU QOUW QU QU m OwWowWw AOUNW QOw

Sine (radians)

Cosine (radians)

Arctangent (radians)

Hyperbolic tangent (radians)

Square root

Exponential

Natural logarithm

Common logarithm

Absolute value

Remainder

Truncate fractional bits

AG16

Name

AMAXO
AMAXI1
MAXO0
MAX1
DMAX1

AMINO
AMINI
DMINI
MINO
MIN1

FLOAT
AIMAG
DBLE
CMPLX
REAL
SNGL

SIGN
DSIGN
ISIGN

DIM
IDIM

CONJG

Bit String Operations

Name
IAND
ICLR
IOR
ISET
ITEST
IXOR
NOT

Choose largest argument

Choose smallest argument

Change data type or argument

Value of first argument, sign of second

Positive difference

Complex conjugate

Clear a specified bit

Set a specified bit
Test specified bit
Logical EXCLUSIVE OR

Argument Result
Data Type Data Type Function
I R
R R
I I
R I
D D
I R
R R
D D
I I
R I
I R
C R
R D
C R
C R
R D
R R
D D
I I
R R
I I
C C
Argument Result
Data Type Data Type Function
I I Logical AND
I I
1 I Logical OR
I I
I I
I I
I I

SPECIAL SUBROUTINES FOR FORTRAN USE

Name
IFETCH (I)
ISHFT
ISTORE(I, J)
LOC
OVERFL

SLITE
SLITET
SSWTCH

ONEs complement

Get contents of location I
Shift integer in A-register
Store value of J in location I
Find address of argument
Check for error condition

Set and reset sense lights or switches

Argument Result
Data Type Data Type Function
I I
c-2

AGl6

COMPILER SUPPORT SUBROUTINES

Conversion Routines

Argument Result
Name Data Type Data Type Function
C$12 I R Convert integer to real
C$15 1 C Convert integer to complex
C$16 I D Convert integer to double-precision
c$21 R~ I Convert real to integer
C$25 R C Convert real to complex
Cc$26 R D Convert real to double-precision
C$51 C I Convert complex to integer
C$52 C R Convert complex to real
Cc$61 D I Convert double-precision to integer
C$62 D R Convert double-precision to real
c$81 D D Convert exponent of double-precision
number to integer
Logical Relationals
Argument Result
Name Data Type Data Type Function
C$EQ C L Equal to
I$EQ I L
R$EQ R L
I$GE I L Greater than or equal to
R$GE R L
I$GT I L Greater than
R$GT R L
I$LE I L Less than or equal to
R$LE R L ’
ISLT I L Less than
R$LT R L
C$NE C L Not equal to
I$NE I L
R$NE R L
Arithmetic Routines
Name Function Name Function
A$21 R =R+l D$51 C =C/I
A$22 R = R+R D$52 C=C/R
A$51 C = C+tl D$55 C =C/cC
A$52 C =C+R D$61 D =D/I
A$55 C =C+C D$62 D =D/R
A$61 D =D+l D$66 D =D/D
A$62 D =D+R E$11 I = I¥ek]
A$66 D =D+D E$21 R = R*%]
A$81 D = D#(2%x%I) E$22 R = R¥*R

C-3 AG16

Name
D$11
D$21
D$22
E$55
E$61
E$62
E$66
M$11
M$21
M$22
M$51
M$52
M$55
M$61
M$62
M$66

Miscellaneous Routines

Name
ACl

ARGS$
F$AT
F$ER

H$22
H$55
H$66

L$22
L$55
L$66

L$33
SUB$

Function M . Function
1=1/1 E$26) b = R#:D
R = R/I E$51 C = Cu%]
R=R/R E$52 . - C = ¥R
C = C**C N$22 R = -R

D = D#x] N$33 L=-L

D = D**R N$55 C=-C

D = D**D N$66 D=-D
I=Ix1 s$21 R = R-I
R = R*I S$22 R = R-R
R = R*R S$51 C =C-I
C = C*I _ S$52. C = C-R
C = C*R _ S$55° C =cC-C
C = C*C S$61 D = D-I
D = D#I S$62 D =D-R
D = D*R S$66 D =D-D
D =Dx*D z%80 . - - Replace binary exponent

with zero

Function

Pseudo accumulators

Convert indirect address to direct address
Transfer variable number of arguments
Print error messages

Store real number in memory
Store complex number in memory
Store double-precision number in memory

Load real number into A- and B-registers
Load complex number into complex accumulator
Load double-precision number into double-precision accumulator -

INCLUSIVE OR with A-register

Calculate address of array element

C-4 AGle6

APPENDIX D
LIBRARY INDEX

Approx.
Primary Entry Subroutines Number of Storage Tape
Name Points Called References (Wordslo) Number Page

20 2 5-2

A$21 A$21 F$AT
H$22
FLOAT
A$22

— et et

A$22 A$22 ARGS$ 150 2S5 5-3
S$22 N$22

F$ER

A$22X A$22 N$22
S$22 F$ER

A$51 A$51 F$AT
H$55
C$l12
H$22
L$55
A$52

A$52 A$52 F$AT
H$55
L$22
A$22
H$22
L$55

A$55 A$55 F$AT
H$55
SUB$
L$22
A$22
H$22
L$55

A$61 A$6l F$AT
H$66
C$12
H$22
L$66
A$62

A$62 A$62 F$AT
H$66
DBLE
A$66

—

140 2H 5-4

2C 1 5-5

60 1 5.7

20 1 5.8

b bt bt b b b e DD DV W e b e b b e e [—

20 1 5-9

N o

Number of
References

Approx.

Primary Entry Subroutines
Name Points Called
A$66 A$66 N$66
S5$66 F$ER
M$66 H$66
D$66 L$66
ARGS$
ACl
AC2
AC3
A$66X A$66 N$66
A$66X F$ER
S$66 H$66
S$66X L$66
M$66 ARGS$
M$66X ACl
D$66 AC2
D$66X AC3
A$81 A$81 N$22
F$ER
ACl
AC2
ABS ABS L$22
N$22
ACl ACl
AC2
AC3
AC4
AIMAG AIMAG L$55
L$22
AC3
AINT AINT L$22
N$22
A$22
S$22
ALOG ALOGI10 ARGS$
ALOG Cc$12
H$22
L$22
A$22
S$22
D$22
M$22
F$ER
ALOGX ALOGI0 ARGS$
ALOG C$12
ALOGX A$22
M$22
S$22
F$ER
ALOGI10 See ALOG or ALOGX
AMAXO See MAXO0

—

[

(S —— e D) bt et bt et Pt e (W) b b et et bt bt s () e

Storage Tape

(Wordslo) Number Page

580 5-10

530 1 5-12

70 1 5-13
10 2 4-2

5 2 5-14
10 1 4-3
30 2 4-4,
120 25 4-5
180 2H 4-6
4-8
4-9

AGlé6

"

Primary Entry
Name Points
AMAX]1 See MAXI1
AMINO See MINO
AMINI1 See MIN1
AMOD AMOD
ARGS$ ARGS$
ATAN ATAN2
ATAN
ATAN2 See ATAN
C$12 C$12
C$15 C$15
C$l6 C$16
c$21 c$21
c$25 Cc$25
C$26 C$26
C$51 C$51
C$52 C$52
Cc$61 C$61
C$62 C$62
SNGL
Cc$81 C$81
C$EQ C3EQ

Approx.

Subroutines Number of Storage Tape
Called References (Wordslo) Number Page

4-10

4-11

4-12

L$22 1 30 2 4-13
D$22 1
AINT 1
M$22 1
N$22 1
A$22 1

20 2 5-15

ARGS$ 3 340 2 4-14
D$22 6
N$22 7
M$22 5
"A$22 11
S$22 2

4-16

A$22 1 30 2 5-16
N$22 1

C$12 1 4 1 5-17
C$25 1

C$l12 1 5 1 5-18
C$26 1

N$22 1 30 2 5-19
A$22 1
F$ER 1

H$22 1 20 1 5-20
CMPLX 1

ACl 1 10 1 5-21
AC2 1
AC3 1

C$52 1 4 1 5-22
Cc$21 1

H$55 1 10 1 5-23
L$22 1

C$62 1 4 1 5-24
Cc$21 1

L$22 1 20 1 5-25
N$66 1
N$22 1
L$66 1
ACl 1
AC2 1

ACl 1 10 2 5-26

ACl 1 20 2 5-27
AC3 1

o)
!
w

AGle

Primary Entry
Name Points
C$NE C$NE
CABS CABS
CCOSs CCOS
CEXP CEXP
CLOG CLOG
CMPLX CMPLX
CONJG CONJG
CSIN CSIN

Subroutines
Called

Number of
References

Approx. -
Storage Tape
(Wordslo) Number Page

ACl
AC3

F$AT
SUB$
L$22
M$22
H$22
A$22
SQRT

F$AT
L$55
A$55
H$55
CSIN

F$AT
SUB$
EXP
H$22
CcOS
M$22
SIN
L$55

F$AT
SUB$
L$22
M$22
H$22
A$22
ALOG
ATAN2
L$55

F$AT
SUB$
L$22
H$22
L$55

F$AT
SUB$
L$22
H$22
N$22

F$AT
SUB$
EXP
H$22
L$22
D$22
A$22
SIN
M$22
S$22
cos
L$55

o b e e WO U = NI N NN e e e e e U1 WO e b N b D e] b b b b e e b e DO NNV e e

o
IS

10 2 5-28

40 1 4-17

40 1 4-18

60 1 4-19

90 1 4-20

40 1 ' 4-21

40 1 4-22

90 1 4-24

AGl6

Approx.
Primary Entry Subroutines Number of Storage Tape

Name Points Called References (Wordslo) Number Page

CSQRT CSQRT F$AT 1 90 1 4-25
SUB$ 7
CABS 1
H$22 8
ABS 1
A$22 1
M$22 2
SQRT 1
L$22 6
D$22 1
L$55 1

D$11 D$11 ARGS$ 1 80 28 5-29
F$ER 1

D$11X D$11 ARGS$ 1 40 2H 5-30
" D$11X . F$ER

D$21 D$21 F$AT
H$22
FLOAT
L$22
D$22

D$22 See M$22 5-32

D$22x D$22 N$22 110 2H 5-33
F$ER

D$51 D$51 F$AT
H$55
C$12
H$22
L$55
D$52

D$52 D$52 F$AT
H$55
SUB$
L$22
D$22
H$22
L$55

D$55 D$55 F$AT
H$55
SUB$ 1
L$22
Ms$22
H$22
A$22
D$22
S$22
N$22
L$55

D$61 D$61 F$AT
H$66
C$12
H$22
L$66
D$62

20 2 5-31

—_— e N

N W

20 1 5-34

P bt b b s

50 1 5-35

NN NN

140 1 5.36

N = -

20 1 5-37

B e e e e e e = NNV 00 O 0O

D-5 AGl6

Primary Entry
Name Points
D$62 D$62
D$66 See A$66
D$66X See A$66X
DABS DABS
DATAN DATAN
DATAN2 DATAN2
DBLE DBLE
DCOS DCOS
DEXP DEXP
DIM DIM
DINT DINT

Subroutines
Called \

Number of
References

F$AT
H$66
DBLE

L$66
D$66

F$AT
L3$66
N$66

F$AT
DABS
H$66
Cc$8l
L$66
A$66
N$66
D$66
M$66

F$AT
L$66
H$66
F$ER
D$66
DATAN
S$66
A$66

F$AT
L$22
C$26

F$AT
L$66
A$66
H$66
DSIN

F$AT
L$66
M$66
H$66
C$61
C$16
N$66
A$66
S$66
D$66
A$81

L$22
S$22

L$66
N$66
A$66

—— e)

—

e e b b b b b WO O WO W O e b e e

—
b () 00 P bt b b 0D DN R b b et b e

— 0N b e e

o
&

Approx.

Storage Tape
(Wordslo) Number Page
20 1 5-38
5-39
5-12
10 1 4-26
180 1 4-27
70 1 4-28
20 1 4-29
20 1 4-30
160 1 4-31
20 2 4-32
20 1 4-33

AGl6

.

Primary Entry
Name Points
DIV$ See M$22
DLOG DLOG
DLOG2 DLOG2
DLOGI10 DLOGI10
DMAX]1 DMAXI
DMINI DMINI1
DMOD DMOD
DSIGN DSIGN
DSIN DSIN
DSQRT DSQRT

Subroutines
Called

Number of
References

Approx.
Storage Tape
(Wordslo) Number Page

5$66
ACl

F$AT
DLOG2
M$66

F$AT
L$66
F$ER
Cc$8l
C$l16
H$66
2$80
A3$66
S5$66
D$66
M$66

F$AT
DLOG2
M$66

L$66
H$66
S$66

L$66
H$66
S5%66

F$AT
L$66
D$66
H$66
DINT
M$66
S$66
N$66

F$AT
L$66
N$66

F$AT
DABS
M$66
H$66
Cc$61
C$16
N$66
A$66
MOD
L$66
S$66

F$AT
L$66
Cc$62
H$22
SQRT

1
1

N OO b~ W = 1O = = = W b b bt b et e b e = N W R NW e OO NOE O = e e

il S

@)
'
~

5-69
10 1 4-34

100 1 4-35

10 1 4-36
40 1 4-37
40 1 4-38

20 1 4-39

20 1 4-40

130 1 4.41

40 1 4-42

AGl6

Approx.
Primary Entry Subroutines = Number of Storage Tape

Name Points Called References (Wordslo) Number Page

C$26
H$66
D$66
A$66
A$81

E$ll E$11 ARG$
M$l11
FSER

E$11X E$l1 ARGS$
E$11X F$ER

E$21 E$21 ARG$
M$22
D$22

E$22 E$22 ARGS$
ALOG
M$22
EXP

E$26 E$26 F$AT
c$26
H$66
DLOG
M$66
DEXP

E$51 E$51 F$AT
H$55
LABS
L$55
M$55
D$55

E$52 E$52 F$AT
H$55
L$22
C$25
L$55
E$55

E$55 E$55 F$AT
H$55
CABS
F$ER
CLOG
C$25
M$55
CEXP

E$é61 E$61 F$AT
H$66
L$66
D$66
D$11
M$11
M$66

100 28 5-40

110 2H 5-41

50 2 5-42

o e o — N - [S S e

30 2 5-43

— b b e

30 1 5-44

—— e N =

60 1 5-45

30 1 5-46

Pt bt b bt D) b bt BN b)

40 1 5-47

70 1 5-48

N N U b e e e e N

D-8 AGle

&

Primary Entry
Name Points
E$62 E$62
E$66 E$66
EXP EXP
F$AT F$AT
FLOAT FLOAT
H$22 H$22
H$55 H$55
H$66 H$66
I$EQ I$EQ
I1$GE I1$GE
I$GT I$GT
I$LE ISLE
ISLT I$LT
I$NE I$NE
IABS IABS
IAND IAND
ICLR ICLR
IDIM IDIM
IDINT See IFIX
IEOR See IXOR
IFETCH IFETCH
IFIX IDINT
INT

Approx

Subroutines Number of Storage Tape
Called References (Words 1 o) Number Page

F$AT 1 30 1 5-49
H$66 2
DLOG 1
M$62 1
DEXP 1

F$AT 1 30 1 5-50
H$66 2
DLOG 1
M$66 1
DEXP 1

ARG$ 1 230 2 4-43
N$22 2
M$22 6
S$22 3
A$22 2
D$22 2
F$ER 1

50 2 5-51

C$12 1 10 2 4-44

ARG$ 1 10 2 5-53

ARG$ 1 20 1 5-54
ACl 1
AC2 1
AC3 1
AC4 1

ARG$ 1 20 2 5-55
ACl 1
AC2 1
AC3 1

5 2 5-56

10 1 5-57

10 2 5-58

10 2 5-59

10 2 5-60

10 2 5-61

10 2 4-45

10 2 4-46

F$AT 1 10 2 4-47
ISHFT 1

20 2 4-48

4-49

4-59

ARG$ 1 10 2 4-50

L$22 1 10 2 4-51
Cc$21 1

D-9 AGl6

Primary Entry
Name Points
IFIX
INT See IFIX
IOR IOR
ISET ISET
ISHFT ISHFT
ISIGN ISIGN
ISTORE ISTORE
ITEST ITEST
IXOR IEOR
IXOR
L$22 REAL
L$22
1L$33 L$33
L$55 L$55
L$66 L$66
LOC LOC
M$l1 M$11
M$11X M$11
M$11X
M$21 M$21
M$22 M$22
D$22
DIV$
M$22X M$22
M$51 M$51
M$52 M$52

Approx.

Subroutines Number of Storage Tape

Called References (Words Number Page

4-52

20 2 4-53

F$AT 1 10 2 4-54
ISHFT 1

30 2 4-55

20 2 4-56

F$AT 1 10 2 4-57

F$AT 1 10 2 4-58
ISHFT 1

10 2 4-59

ARGS 1 10 2 5-62

10 2 5-63

ARGS$ 1 20 1 5-64
ACl 1
AC2 1
AC3 1
AC4 1

ARG$ 1 20 2 5-65
ACl 1
AC2 1
AC3 1

10 2 . 4-60

ARGS$ 1 110 2s 5.66
F$ER 1

ARGS$ 1 50 2H 567
F$ER 1

F$AT 1 20 2 5-68
H$22 1
FLOAT 1
M$22 1

N$22 5 330 28 5-69
ARG$ 2
F$ER 3

F$ER 1 130 2H 5-70

F$AT 1 20 1 5-71
H$55 1
C$12 1
H$22 1
L$55 1
M$52 1

F$AT 1 50 1 5-72
H$55 1

D-10 AGlé6

Le

Primary Entry
Name Points
M$55 M$55
M$61 M$61
M$62 M$62
M$66 See A$66
M$66X See A$66X
MAXO0 AMAXO0
MAXO
MAX1 AMAX]1
MAX1
MINO AMINO
MINO
MIN1 AMINI1
MINI
MOD MOD
N$22 N$22
N$33 N$33
N$55 N$55

Subroutines
Called

Number of
References

Approx.
Storage
(Wordslo)

Tape
Number

Page

SUB$
L$22
M$22
H$22
L$55

F$AT
H$55
SUB$
L$22
M$22
H$22
S$22
N$22
A$22
L$55

F$AT
H$66
c$12
H$22
L$66
M$62

F$AT
H$66
DBLE
M$66

FLOAT

L$22
H$22
S$22
IFIX

FLOAT

L$22
H$22
S$22
IFIX

D$11
M$11

H$55
SUB$
L$22
N$22
H$22
L$55

[
—— N NV Ll i R I N N N = T I PR VR R R R)

—

L NN

NN N

110

20

20

40

50

30

50

20

10
10
30

5-76
5-12
4-61

4-62

4-65

5-77

5-78
5-79

AGlé6

Primary
Name

‘ Approx.
Entry Subroutines Number of Storage

Points Called References (Wordslo)

N$66

NOT
OVERFL
R$EQ
R$GE .
R$GT
R$LE
R$LT
R$NE
S$21

S$22
S$51

S$52

S$55

S5$61

S$62

Tape
Number

N$66 ACl 1 30
AC2 1
AC3 1

NOT 10
OVERFL AC5 1 20
R$EQ 10
R$GE 10
R$GT 10
RS$LE 10
R$LT 10
R$NE . 5

S$21 F$AT
H$22
FLOAT
S$22
N$22

20

P Pt et e

See A$22

S$51 F$AT
H$55
C$12
H$22
L$55
S$52

S$52 F$AT
H$55
L$22
S$22
H$22
L$55

S$55 F$AT
H$55
SUBS$
Lg22
S$22
N$22
H$22
L$55

S$61 F$AT
H$66
Cc$12
H$22
L$66
S5$62

S$62 F$AT
H$66
DBLE
S$66
N$66

40

[P W —

30

40

20

Do T i i i NN NN B [

20

[A

o
L
~

N DV DV DD NN DD DNV

4-66
4.67
5-81
5-82
5-83
5-84
5-85
5-86
5-87

5-88
5-89.

5-90

' 5-91

5-92

5-93

AGlé6

Primary Entry
Name Points
S$66 See A$66
S$66X See A$66X
SIGN SIGN
SIN COS
SIN
SIZ$ See SUB$
SLITE SLITE
SLITET
SSWTCH
SLITET Seec SLITE
SNGL See C$62
SQRT SQRT
SQRTX SQRT
SQRTX
SSWTCH See SLITE
SUB$ SUB$
TANH TANH
2$80 Z2%80

Approx.

Subroutines Number of Storage Tape
Called References (Wordslo) Number Page
5-94
5-12
L$22 2 20 2 4-68
N$22 1
ARGS$ 1 190 2 4-69
N$22 2
M$22 7
S$22 1
A$22 4
5-95
ARG$ 3 70 2 4-70
1$33 1
4-71
5-96
ARG$ 1 70 2S 4-72
DIV$ 1
D$22 1
ARG$ 1 80 2H 4-73
D$22 1
A$22 1
F$ER 1
4-74
M$11 3 130 2 5-97
F$ER 1
L$22 1 60 2 4-75
EXP 1
A$22 2
H$22 1
D$22 1
ACl 1 20 1 5-99
AG16

APPENDIX E
ERROR MESSAGES

Error
Message Condition
AD Over/underflow in double-precision
AQO Array element referenced is outside array
= boundary
CE Absolute magnitude of complex number
is zero
-
’ DL Negative or zero argument
DT Both arguments are zero
DZ Division by zero
EQ Exponential overflow adding integer to
double -precision exponent
EX Exponential overflow during exponentiation
I First argument zero, second argument
negative
- I >2andJ 2 15, or
I <-2andJ2 15
IM Over/underflow during integer multiplication
1z Integer division by zero or -32, 768/ -1
LG Log of negative or zero argument
MD Double -precision multiplication or division
over/underflow
PZ Double -precision division by zero
<. RI Integer too large when converted from real
to integer
SA Arithmetic overflow (result 2 2%%127)
SD Divisor unnormalized
SM Arithmetic overflow during multiplication
or division
SQ Negative argument

Subroutine
A$66, S$66, A$66X, S$66X
SUB$

E$55

DLOG, DLOG10, DLOG2
DATAN2

D$22, D$22X

A$81

EXP
E$l1, E$11X

M$11l, M$11X

D$11, D$11X

ALOG, ALOG10, ALOGX
D$66, M$66, D$66X, M$B66X

D$66, D$66X
C$21

A$22, A$22X
D$22
M$22, M$22X, D$22X

SQRT, SQRTX

AGlo

CUMPUTER GENERATEL INUEX

ACCUMULATOR
ACCUMULATORS. 2-3
COMPLFX (PSELIDU) ACCUMULATCH, 2-3
DOUBLF-FRECISIUN (PSEUDO) ACCUMULATOR, 2-3
INTEGFR ACCUMULATORe 2-3
REAL ACCUMULATGK, 2-3
APPENDICFS
APPENDICFS, 1-1
ARITHMETIC OPTION
PAPER TAPF FOR H]GH=SPEEC AKITHMETIC OPTION. A-6
CALLS
N EXAMPLES .OF DAP/700 CALLS TC LIBRARY, 3-2
LIBRARY CALLS FROM LAP/700e 3-1
COMPILER
COMPILER SUPPOKT SUBRCUTINES. 5-1
COMPLEX
COMPLFX (FSEUDO) ACCUMULATOR. 2-3
COMPLFX, 2-2
DAP/700
DAP/700 PROGRAMMING INFORMATION. 3-1
EXAMPLES CI DAF/700 CALLS TC LIBRARY, 32
LIBRARY CALLS FRCM DAP/700. 3=l
DATA
DATA TYPFS ANLU KEPRESENTATIUNS, 2-1
DOUBLE=PRECISION
COUBLF-PRECISION (PSEUDG) ACCUMULATOR, 2-3
DOUBLF=PRFCISIUN. 2=2
FORMAT GF FEAL AND DCUELE-PRECISION NUMBERS. 2 2
ERROR
ERROR MFSSAGES, E-l
EXTERNAL
INTRINSIC ANL EXTERNAL FUNCTIONS AND SUBRQUTINES. 4=-1
FORMAT
FORMAT OF INTEGER, 2-1
FORMAT OF FEAL AND DCUBLE-PRECISION NUMBERS. 2 2
FORTRAN
USE OF FORTRAN MATH LIBRARY, 2-1
FUNCTIONS
INTRINSIC AND EATERNAL FULNCTIONS ANU SUBROUYINES. 4-1
SUBROUTINF FUNCTIONSe C=1
INDEX
LIBRARY INCEXe U=l
INTEGER
FGRMAT CF INTEGER. 2-1
INTEGFR ACCUMULATCR. 2-3
INTEGFR, z=-1
INTRINSIC
INTRINSIC ANL EXTERNAL FUNCTIONS ANC SUBROUTINES. 4-1

i-1

INTRODUCT ION
INTROUUCTIONe 1-1
LIBRARY
EXAMPLES OF DAP/700 CALLS TC LIBRARY, 3.2
LIBRARY CALLS FROM DAP/700e 3-1
LIBRARY INDEX, D=1
USE OF FORTKAN MATH LIBRARY, 2-1
LUADING INFORMATION
LGADING INFORMATION. 1-3
LUGICAL
LUGICALe 2=2
MAGNETIC TAPE
MAGNETIC TAPE, A-l
MATH .
USE OF FORTKAN MATH LIBRARY, 2-1
MATHEMATICAL
MATHEMATICAL ROUTINES. =1
ME SSAGES
EKROR MESSAGES. E-1
NAMING CONVENTIONS
NAMING CONVENTIONS, 1-2
NCRMALIZATION
NORMALIZATION, 2-3
PAPER TAPE
PAPER TAPE, A=l A-4
PAPER TAPE FOR HIGH-SPEED
PAPER TAPE FOR HIGH=-SPEED ARITHMETIC OPTION. A=6
PROGRAMMING
DAP/T700 PROGRAMMING INFORMATION. 3-1

REAL
FORMAT CF RLAL AND DOUBLE-PRECISION NUMBERS. 2 2
REAL ACCUMULATOR, 2-3
REALe 2-1
REGISTEK
REGISTER USt. 2-3
REPRESEMNTATIONS
DATA TYPES AND REPRESENTATICNS. 2-1
SUEROUTINE
CCMPILER SUPPORT SUBROUTINES. 5-1
INTRINSIC AND EXTERNAL FUNCTIONS AND SUBROLTINES. 4-1
SUBROUTINE DESCRIPTIONS, 1-1
SUBROUTINE FUNCTIONS. C-1
SUPPORT
COMPILEK SUPPORT SUBROUTINESe 5-1
SYMEOLS
SYMBOLS. 1=2
TAP

TAPE CONTENTS. A=l

AGle

{3

Honeywell

HONEYWELL INFORMATION SYSTEMS

AG16, Rev. 0

