Honeywell Bull EXECUTIVE

~
SYSTEM 700 0S/700
SOFTWARE

N

A

Ref.: 61A. 2- AR 22, Rev.0

'i

SECTION I
INTRODUCTION

05/700 is an operating system oriented toward satisfying real-time, multi-
programming, and data communications requirements. The system allows dynamic
loading and simultaneous online execution of multiple user programs on a
priority basis. It controls the operation of peripheral devices and data com-
munications equipment, and facilitates the creation and manipulation of disk
files. Language processors, utility housekeeping programs and other programs
provided in the 0S/700 software package can be executed online concurrently with
user application programs under control of the system. This manual describes
the operation and use of the 0S/700 system executive, which monitors and
coordinates all the online functions performed by the system. Figure 1-1 shows

the relationship of the executive to the system as a whole.

FUNCTION OF THE 0S/700 EXECUTIVE

The 0S/700 executive is an integrated set of software routines that reside
in the computer's main memory during the running of the system. The executive
occupies a fixed area of memory, known as the system area, and the remaining
part of memory - the user area - is free to contain user or Honeywell-supplied
online programs {(known as activities). Operation of the system is started by
loading the executive into main memory from some external medium such as disk
or magnetic tape, and initiating its execution. Once the executive is running,
the operator can enter commands through the operator's console - an ASR or KSR
device - to cause it to execute an activity. The activity can be already in
main memory, having been loaded along with the exXecutive, or the executive
itself can load the activity into memory from disk or magnetic tape. Alterna-
tively, the user can configure the system so that the executive automatically

starts the execution of one or more activities after it has been started up.

1-1 AR22

SWYR{D0Ud
ALTTIIN
ANOTY=UNVLS

SWYIO0Ud
SNOILVODITdAdVY

SY0SSHID0Ad
HOVNONYT]
INITINO

s3juauodwo) 00.L/SO

*T-T @anbta

SWYID0¥d
ALITILN
ANITNO

SENILAOY emwmw%@mmz SNATONN
SNOILYOINAWWOD AATINDAXH
AT
AATINDIX
00L/SO

00L/SO

AR22

The activities can then proceed by calling on the executive to perform any

of a number of individual functions, known as executive functions. An executive

function may consist, for example, of inputting a card from the card reader,
creating a disk file, or starting another activity. The executive continues to
allocate central processor time to activities, allowing interleaved execution
according to priority, while simultaneously monitoring the real-time clock and
peripheral device interrupts. The executive performs all peripheral device
input and output through device driver routines. The operator maintains
control throughout the system's operation by communicating with the executive

through the operator's console.

Executive Nucleus

As shown in Figure 1-1, the executive is for documentation purposes divided
into the executive nucleus, the file management routines and the communications
routines. The executive nucleus performs all executive functions except those

included in the other two headings.

OPERATING SYSTEM TYPES

Systems configured under 0S/700 are divided into two general but distinct
types:

e Configurations which include a system disk. 1In this type of
system, portions of the executive together with system and user
activities are allowed to be disk-resident and are automatically
loaded into main memory as they are required.

e Configurations which do not include a system disk. 1In this type of
configuration, the entire executive must be main memory-resident;
system and user activities can reside on external media (other than
disk), but must be explicitly loaded by the operator.

Systems configured with a system disk are called Disk Operating Systems
(DOS), while those systems configured without a system disk are called Core
Operating Systems {(COS). Note that a COS configuration can include disk storage
as well as other secondary storage devices, but the disk is not used to
dynamically load portions of the executive during normal system operation. Disk

usage in a COS configuration is restricted to user physical I/0 operations.

FACILITIES PROVIDED BY THE 0S/700 EXECUTIVE

e Resource Management - The executive manages the allocation of
central processor time, main memory, and I/O devices.

e File Management Capability (DOS only) - The executive provides a
file management capability in addition to a physical I/O interface.

® Priority Assignment - The executive permits the user to assign
priority levels to the execution of activities and individual
routines (tasks).

e Foreground-Background Operation - Because of its pricrity assign-
ment capability, the executive provides foreground-background
operation. Normally, the foreground is used for high-priority

operations; the background is used for low-priority operations.

1-3 AR22

e Clock-Initated Program Execution - The execlt..e allows the use:
to execute programs at a specified time interv.l on a cyclic or
noncyclic basis.

o Queued Execution Requests - Requests for the execution of executive
functions are queued and initiated according to their assigned
priorities. .

e System Integrity (DOS only) - Activities can be run in restricted
mode, in which they are closely monitored by the system; if they
perform an illegal operation, they are terminated (aborted) by the
system, which also keeps track of and returns all system resources
used by these activities. Restricted activities can also be
aborted by operator command.

e Systems Greater Than 32K (DOS only) - 0S/700 supports up to 64K
memory.

e Command Input Mode - Commands and responses normally typed on the
operator's console may be read from a disk file.

SCOPE OF THIS MANUAL

This manual describes the structure and operation of the executive, and its
interface with the user program. It describes the nature and purpose of all the
executive nucleus functions available to the user. The manual explains how a
user program can make use of the wide range of executive facilities listed in
the previous subsection, with the exception of file management, communications
functions and the command input facility. These are described separately and

respectively in the 05/700 File Management manual, the 0S/700 Communications

manual, and the 0S/700 Operators Guide.

7/

Section II of this manual describes the structure and function of the
system executive, and basic system principles. The woperation of 0S/700 centers
around the concept of activities and tasks. Their definitions and relationships
must be understood before the overall system operation can be grasped. These
concepts are explained in Section II. This section also describes the interface

between a user program and 0S/700.

Section III goes on to explain in detail how the user can schedule tasks,
and Section IV does the same for activities. Section V describes the management
of gqueues and free memory. Section VI describes how the user performs physical
I/0 under 0S/700, and Section VII describes the interface between the user pro-
gram and the operator. Section VIII describes other miscellaneous functions

which do not fall into any of the above categories.

The appendices list error codes and physical I/0 device and other informa-

tion needed by the 0S/700 programmer.

1-4 AR22

SECTION II

GENERAL DESCRIPTION

SYSTEM EXECUTIVE OVERVIEW

The 0S/700 executive performs a number of well-defined basic operations
which monitor and control the computer hardware. These include operations such
as:

Responding to interrupts
Driving peripheral devices
Monitoring the real-time clock

Allocating work areas in main memory

Controlling the order in which routines are executed
within the system.
Together, the interaction of these basic system operations controls the overall

running of the system.

The user program, however, sees the system executive in terms of what it
can do for him. The user program sees the executive as another collection of
functions called executive functions, equally as well defined as (but in gen-
eral different from) the basic executive operations. These executive functions
can be called individually by a user program by means of an executive function
macro. The 0S/700 supplied software includes a macro library, MACLIB, which
defines these executive function macros for use by a user program. Each of
these executive functions is handled by an executive function action routine,
and the execution of this routine normally requires several of the basic ex-
ecutive operations described above. The system executive itself can also call
on an executive function in the same way as a user can. Each set of related
action routines, such as the set which performs disk file operations, or the
set which handles operator messages, can be grouped together into an individual

functional component of the executive.
The system executive consists of the functional components shown in

Figure 2-1. This diagram shows the two main sets of components: the basic

system components and the executive function action routines.

2-1 AR22

(

weibeTd TRUOTIDUNI-BATINOSXH woasks 00L/SO

)

*1-z 9Inbtd

SYAATIA
¥ossao0oud
ASYL SYAATH™A VOSIA¥IANS 7 OVS SN HIOYNYW qAOIAIA
LHOEY SNOILYOINAWWOD SNOILYOINAWWOD JOo¥¥d WILSKAS LANY¥ALNT TYIIHA TG
AN
SANIINONENS STOVNYH —— SOV ¥OosSIO0Ud
WALSAS AMOWEW FIdd D010 MSYL JdAL dANIT
ALITIIA TYYEANID SNOILVOINNWWOD
| | | | |
|
SINANOAWOD WALSAS OISvVd
q
s mwwmmwamemmm SANIINOY NOILOY ATANVH YIOUNYW TIOUNYIK
SNOINVTTIOSIH SNOIIVOINNWWOD SWIL/ILYd NOILYO0TIV X¥OLOTUIA
¥0osSsaDoNud
AOYSSHN YOSTAYAANS HTOYNYW VA DOUYNYW WA OUYNYW WA OYNYHW
oL vdIdo ALIATLOV HWNTOA F1id XYVHEIT INdIN0/INANI
[| _ I |]
SANIIAOY NOIIOVY NOILONNI FAILNDIXI
1
T dIOUNW
YIAVOTINIW NOILONNA
TAILNDIXE
|
1
J0SsFO0dd
ANYWHWOO
HOILvdddo
I
AATLNOIXH WYHo0ud
WALSAS ¥gsn YOLvHIO

AR22

Executive Component Interaction

The diagram makes no attempt to show the numerous control paths between
the various executive compcnents. In general the action routines make large
numbers of calls on the basic executive components to set up or perform opera-
tions, whereas there is less interaction between individual action routines and
individual basic components. Executive components request the execution of
other executive components in one of five ways:

e By a direct subroutine call (or jump).

e By scheduling a task. This enables two routines to execute
in parallel on a multiprogramming basis. (Tasks are explained
later in this section.)

e By scheduling an activity. This enables a complete program
such as a device driver, which may be disk-resident, to be
brought into main memory for execution.

e By calling an executive function. Executive functions can
also be disk-resident, and this method causes the system to
perform the necessary input of overlays; also the calling
routine enjoys the same conveniences that a user program has
on an executive function call, such as having certain registers
preserved through the call.

e By connecting an interrupt. This enables a routine to be ex-
ecuting when a peripheral device has completed some operation,
and interrupts.

Executive Function Action Routines

Action routines receive executive function calls and parameters through a
standard interface. Arguments and data for them to operate on are set up in
standard memory locations when an executive function call is made. This in-
terface is described from the user's point of view in "Executive Function

Calls," later in this section.

Most of the action routine components shown in Figure 2-1 can be disk-
resident in a DOS configuration, although the user can specify at configuration-
time that individual routines are to be main-memory-resident to increase the
speed of operation of the system. A portion of the system area of main memory —
the system overlay area — is reserved in a DOS configuration for disk-resident
action routines. The system reads routines into the overlay area from the
disk automatically as they are required. 1In general, the system overlay area
has room for one of the components shown in the diagram at any one time, al-
though two or more of the smaller components can fit into an overlay, whereas

one or two of the larger components are split into two or more overlays.

Executive function action routines can call on other executive functions:

for example, the file manager can make a call on the allocation manager to
obtain a work area on the disk.

2-3 AR22

EXECUTIVE FUNCTION MANAGER

This routine is memory-resident in every 0S§/700 system. It acts as the
interface for all executive function calls. It performs the necessary saving
of registers through calls, locates the required action routine and transfers
control to it, communicating to it the caller's parameters. All action
routines return to the caller through the function manager, which must set up
the hardware in a suitable state for return to the caller and communicate error

information returned to the caller

Since executive function action routines can call on other executive
functions, the function manager must handle recursive calls on itself several

levels in depth, and preserve registers through these multilevel calls.

MINILOADER

This routine loads action routines into the system overlay area in a DOS
configuration. It queues concurrent requests for the use of the system overlay

area according to priority.

INPUT/OUTPUT MANAGER

The I/0 manager consists of routines for allocating peripheral devices
and for initiating I/O operations to be carried out by peripheral device

drivers.

LIBRARY MANAGER

This routine manipulates libraries (named groups of files) on disk in a

DOS configuration.

FILE MANAGER

This routine performs the creation and manipulation of disk files in a

DOS configuration.

VOLUME MANAGER

This routine manages the connection and disconnection of disk packs to
the system in a DOS configuration and automatically sends commands to the

operator for the loading and unloading of removable disk packs.

ACTIVITY SUPERVISOR

This routine manages the execution of programs in memory and performs

the loading of disk-resident programs into main memory in a DOS configuration.

2-4 AR22

OPERATOR MESSAGE PROCESSOR

This routine enables a program to type a message on the operator's console

and optionally receive a response from the operator.

DIRECTORY MANAGER

This routine manipulates disk directories, which in a DOS configuration

record the names and characteristics of files, libraries, and disk-resident

activities.

ALLOCATION MANAGER

This routine controls the sharing of disk space for various purposes by

the system or the user in a DOS configuration.

DATE/TIME HANDLER

This routine, after initial setting-up, records the passage of the time

of day.

COMMUNICATIONS ACTION ROUTINES

These routines enable the user to perform specific communications functions

such as connecting to a station and sending and receiving data.

MISCELLANEOUS AND INTERFACE ACTION ROUTINES

This category covers a group of functions, such as scheduling a task, per-
formed by the basic system components, which cannot be called directly by a
user program. Interface action routines translate data presented by the user
in the executive function call into a suitable form for a direct call on the
basic components. It also covers assorted minor functions such as queue handling
and the supply of information about the system configuration (e.g., which disk

is the system disk).

Executive Function Requests

Executive function requests through the function manager, as shown in the
diagram, come from three sources:

e The operator. The operator command processor routine enables
the operator to type in basic requests, such as a request to
start an activity, through the console.

e A user program.

e The system executive itself.

2-5 AR22

Basic System Components

These components in general can be accessed by the user only through action
routines. They are always memory-resident, and must all be present in an
08/700 system (except for the communications components, which are optional).
Calls to these components, from action routines or from each other, are

usually in the form of subroutine calls.

INPUT/OUTPUT MANAGER

The I/0 manager consists of routines to initiate I/O operations to be
carried out by peripheral drivers and routines for allocating peripheral de-

vices.

PERIPHERAL DEVICE DRIVERS

These are the routines that perform the actual hardware instructions to
drive peripheral devices. There is a different driver for each different type
of device. Drivers can be memory-resident, in which case they reside with the
system executive, or in a DOS configuration they can be in the form of disk-
resident activities which are brought into the user area of main memory as re-
quired. The driver for the operator's console and (for obvious reasons) the

system disk driver in a DOS configuration must, however, be memory-resident.

INTERRUPT MANAGER

This routine saves the state of the computer when an interrupt occurs and

passes control to the appropriate interrupt response routine.

TASK MANAGER

The most basic part of every 0S/700 system, this routine controls the
execution of all routines that are not interrupt-initiated. Routines are
scheduled through the task manager, which causes them to be executed according

to priori.y.

SYSTEM ERROR MESSAGE PROCESSOR

This routine enables the system to output error messages to the operator's

console.

CLOCK MANAGER

This routine reéponds to interrupts made regularly by the real-time clock.
Routines can be scheduled for execution at a specific interval or after a
specified delay, and the clock manager sees that these are dispatched at the
appropriate time. For example, if a peripheral device has not responded to a
driver command after a reasonable period 9f time, the clock manager will call

a driver routine to check for an error situation.

2-6 AR22

FREE MEMORY MANAGER

This routine controls the allocation of data areas in main memory.

COMMUNICATIONS SUPERVISOR

This routine oversees the operation of communications devices.

COMMUNICATIONS DRIVERS

These routines perform the necessary hardware manipulations for the sending

and receiving of data through a communications controller.

COMMUNICATIONS LINE TYPE PROCESSORS

These routines cause data to be exchanged on communications links according

to particular protocols.

GENERAL SYSTEM UTILITY SUBROUTINES

These subroutines perform utility operations such as the saving of registers

and the manipulation of queues.

ABORT TASK

This routine terminates the operation of certain types of activities,
known as restricted activites. These activities can be aborted if they
malfunction, if the system is overloaded, or on a command from the operator.
The abort task is responsible for cleaning up and returning all system re-

sources used by these activities.

Operator Interface Processor (OIP)

This name is given to the collection of components comprising the operator
command processor, the operator message processor, and the system error message
processor. OIP controls all messages passed between the system and the op-

erator's console.

FREE MEMORY

Certain areas of main memory in an 0S/700 system are divided into free
memory blocks of various sizes: all block sizes are powers of 2, ranging from
4 to 4096 words. The available sizes and the number of blocks of each size are
defined by the user at the time the system is configured. These blocks are
used as data space in reentrant system routines. The Free Memory Manager, a
routine within the 0S/700 executive, controls the allocation of these blocks.

A routine can call upon the Free Memory Manager to request the allocation of a
block of a particular size: it is the responsibility of the routine using the
block to return the block to the appropriate pool of available blocks when it

has finished with it. User programs can also use free memcry blocks; executive

2-7 AR22

function macros are provided to enable the user to cz' i upon the Free Memory
Manager to fetch or return a block. The user is recommended to use free memory
blocks only when necessary; for example, in reentrant coding or to pass param-
eters from one user program to another. When a user program requires data
space for an I1/0 buffer, for example, it is simpler to use an area of memory
within the user program where this can reasonably be done instead of fetching
a free memory block; this course of action also ensures the maximum supply
of free memory blocks for the use of the system.
e

TASKS

On a 716 computer, program instructions are executed one at a time, in
sequence. The sequence is controlled by the instructions themselves, and will
normally include jumps and loops, but once execution of a set of instructions
has begun, it will continue until an interrupt occurs or the computer is halted.

An interrupt causes a new sequence of instructions to be started.

The online execution of program instructions (code) under 0S/700 is con-
trolled by a system routine known as the dispatcher. Program instructions
executed under 0S/700 fall into two groups: interrupt response code and task
code. A set of interrupt response code is a sequence of instructions whose
execution is started when a hardware interrupt occurs. A set of task code is
a sequence of instructions whose execution is started by the dispatcher, upon
request from a user or from the system itself. A task is a single instance
of execution of a set of task code. The term "task" is also used to denote
the set of task code itself.

Task code is contained both within the system and within user programs,
whereas interrupt response code is contained only within the system, since
it is the responsibility of the system to handle interrupts from peripheral
devices and other sources. A user program (known as an activity) contains
at least one task, and can contain several. All tasks and interrupt response
code terminate ultimately by jumping to the dispatcher, which then decides
which task to execute next. An executive function macro is provided to enable

a user task to terminate itself.

Task Scheduling

The act of requesting a task to be executed is known as scheduling the
task. Task scheduling and dispatching is performed by a system component
known as the task manager (of which the dispatcher itself is a part). A task
may be scheduled by interrupt response code or by another task (either a user
task or a system task. Scheduling is performed by making a call upon the
task manager; executive functions are provided to enable a user program to

do this.

2-8 AR22

When scheduling a task, the caller assigns a priority level which indi-
cates the relative importance of its execution. O0S/700 allows the specifica—

tion of up to 16 priority levels — three system levels for system tasks only,

and a maximum of 13 user levels for either user tasks or system tasks. The
priority level of a task is indicated by a number (0 through 15); the lower
the number, the higher the priority level of the task.

The system keeps a separate queue of tasks scheduled for each priority
level. When the user schedules a task, the task manager places the request

at the end of the scheduling queue for the appropriate level.

Task Dispatching

A task is dispatched when the dispatcher removes it from the scheduling
queue and initiates execution of the task code. A task is resumed when the
dispatcher continues execution of the task code after it has been suspended;
e.g., by an interrupt. Tasks are dispatched and resumed on.the basis of
priority level. A task or interrupt response code terminates by jumping to
the dispatcher; this routine then dispatches previously scheduled tasks, or

resumes previously suspended tasks, according to their priority.

A task must run to completion; i.e., jump to the dispatcher, before
another task can be executed on the same priority level. A task which is
suspended on a particular level, therefore, will be resumed by the dispatcher
and allowed to run to completion before any other task scheduled on that level
is dispatched.

Whenever control is returned to the dispatcher, after a task has been
terminated or an interrupt serviced, either a new task is dispatched, or a
previously interrupted task is resumed. If all tasks have been terminated and
no scheduling requests are in the queues, the dispatcher enters an idle loop,

waiting for an interrupt.

Task Suspension

A task becomes suspended when its operation is temporarily interrupted;
€.g9., by an interrupt from a peripheral device. When a task is suspended,
the system saves the registers and the current state of the hardware, so that
the task can be resumed in exactly the state it had prior to the suspension.
When a task at a particular priority level is suspended, no other task at
that level can be dispatched until the suspended task has been resumed, and
has terminated. Tasks at other priority levels may, however, be dispatched

or resumed.

2-9 AR22

A task may also suspend itself voluntarily, by calling on the task manager;
the dispatcher is tehn entered, and dispatches or resumes the highest-priority
task of those waiting to be executed. If no tasks of higher priority than the
voluntarily suspended task are waiting, the dispatcher will execute a task of
lower priority, if there is one. If no other tasks are waiting to be executed,
the d{spatcher will resume the voluntarily suspended task. Otherwise, the

suspended task will be resumed later when the dispatcher is entered at a time

when no higher-priority tasks are waiting.
An executive function is provided to enable a user task to suspend itself.

Task Control Block (TCB)

A task control block (TCB) is an 8-word memory block containing information
about a task to be scheduled. It is generated b& Eﬁe routine which schedules
the task. The TCB performs two functions. It defines to the task manager the
characteristics of the task - the address at which execution is to begin, the
priority level, and the user activity (if any) of which the task forms a part.
The TCB is placed on the priority level gueue when the task is scheduled. Once
the task has been dispatched, the contents of the TCB are of no further interest
to the task manager. The second function of the TCB is to enable the scheduling
routine to pass parameters to the task. When a task is dispatched, the address
of its TCB is in the X-register; tﬁe task can thus access information placed in

the TCB by the scheduling routine.

Multitasking

A simple example of multitasking is shown in Figure 2-2 to illustrate the
operations of task scheduling and dispatching for the user who is unfamiliar
with these concepts. The solid line marked with arrows on the diagram shows
the actual sequence in which computer instructions are executed; broken lines
indicate where an interrupt has caused the sequence of instruction execution
to be broken off and a new sequence to be started. The entire sequence can be

followed continuously from point A to point F.

Initially, the computer is executing a small loop of instructions in the
dispatcher at point A; there is no task currently suspended or scheduled,
and it is in the idle state. An interrupt then occurs. This causes the in-
terrupt response routine Il to be executed. At some stage, the routine Il
schedules a task Tl at priority level 4. (Calls to the TCB manager to schedule
tasks are not shown on the diagram.) Routine Il terminates by going to the
dispatcher, which then finds that task Tl is scheduled for execution, and
dispatches it. Execution of Tl continugs until a second interrupt occurs, at
point B; this causes the interrupt response routine 12 to be entered. I2 saves
the hardware state and registers at the point where execution of Tl as broken

off, soithat it can be continued later. 12 then schedules a second task, T2'

2-10 AR22

butyselTaTnw *z-z 8anbrg

)

A

\ Z T3AAT

B v

+ Z1 MSVL
-
¥ TIATT \

- a&»m -8
TL ASYL \

4,
qA0D

dSNOdSHY
LANYYHLNTI

YIHDIV4SIA

Tr
4 qaod

HSNOdSHY
LANYIILNT

s

AR22

2-11

at level 2, and utimately returns to the dispatcher. The dispatcher now finds
two tasks waiting for execution: T, at level 4, suspended, and T2, newly

1
scheduled at level 2. T being at the higher priority level, is dispatched.

’
At some point C, T2 findg that it cannot continue because it must wait for
task Tl to complete some operation. T2 therefore voluntarily suspends itself
by calling on the task manager, to allow Tl to run. The dispatcher, finding
no other task waiting except for Tl' restores the hardware and registers to
the state they were in at point B, and resumes T1 at its next instruction D.
Tl finally terminates, at which time the only task waiting for execution is
the suspended T2; so the dispatcher restores Tz's hardware state and resumes

its execution at point E. Finally T, terminates and enters the dispatcher,

2
which, finding no other work to do, idles at point F. (This is the same in-

struction loop as was being executed at point A.)

This is a very simple example. In practice, the operations that occur
under 0S/700 are much more complex: many more priority levels can be involved,
tasks can schedule other tasks, and interrupt response code can itself be in-
terrupted by a privileged interrupt (e.g., power failure). However, the ex-
ample does serve to illustrate that at some point such as C or D in the
diagram, the tasks Tl and T2 can be seen from an oeverall viewpoint as being
executed concurrently (multitasking), whereas only one continuous execution
path is in fact followed, and at any one instant of t;pe only one task, in-
terrupt response routine, or executive routine is being executed. It is
necessary to point out that the tasks T1 and T2 could in fact be the same set
of instructions being ‘in the course of execution at the same time at two
different priority levels. A set of task code can be scheduled any number of
times at any number of different priority levels, or at the same priority
level. It can also be in the course of execution at several different priority
levels concurrently, though not more than once at the same priority level,
since only one task can be running on each priority level at any one time.

Task code which can be executed in this way is said to be reentrant.

Task Code Classifications

Task code can be classified as reentrant, reusable or nonreusable. Re-
entrant code can be executed at two or more priority levels concurrently.
Reusable code can be executed at only one priority level at any given time;
however, it can be executed without the need to reload it into memory after
each execution. Nonreusable code must be reloaded into memory each time it

is executed.

2-12 AR22

The ..ussification of a set of task code depends on how the code itself
operates. TIf a set of task code contains a number of memory locations which
must be set to some initial value in order for the code to operate correctly,
and if the routine changes these values in the course of its execution and
does not reinitialize them u; 'n vecommencement of the task, then the task code
must be reloaded into memory before each execution to initialize the values.
Such task code is nonreusable, and also (clearly) nonreentrant. Routines
which overwrite their own instructions by using the locations for data space
are also nonreusable (unless the overwritten instructions are executed only

on the first dispatching of the task).

Task code that reinitializes itself as necessary for each execution is
reusable. Task code is reentrant if it operates properly even when one task
executing within this code is suspended and another task enters the code. To
guarantee proper operation under these conditions, each task must store
volatile data (data which varies from one task to another) 1n a separate area.
That is, each instance of execution of the task code requires a distinct
memory area for its volatile data. This area may be provided by the routine
which scheduled the task. For instance, a single reentrant body of task code
might be used for logging errors on a console. Each task which scheduled it
would provide its own area for control blocks, parameter lists, and buffers.
Alternatively, the logging task may obtain a data area for each request from
the system free memory pools using the Get Storage Block (GBLS) executive
function, and return it using the Return Storage Block (RBLS$) function.

The hardware registers A, B, X, and S are equivalent to such data areas
because the system maintains for each priority level, a separate area in which
the registers are saved whenever an interrupt occurs. When the task is re-
sumed, the dispatcher reloads the registers with the saved values. This
property of the registers is what makes reentrant code possible. Even tasks
that allocate memory areas for volatile data must make use of the registers
to be reentrant, since the address of a volatile data area is itself volatile
data, and must be stored somewhere. The registers, which have fixed locations,
do not present this problem. To make reentrant coding easier, six pseudo-
registers, ZCRl through ZCR6, are provided. These are fixed memory locations
which are also saved and restored by the system, and are therefore equivalent

to the hardware registers for the purpose of reentrant coding.

A task is nonreentrant if it keeps data in any other fixed memory loca-
tions at a time when it can be interrupted. Sometimes, typically in a sub-
routine, it is convenient to inhibit interrupts for a short time rather than

use the data area provided for reentrancy. While inhibited, local memory

2-13 AR22

areas can be used. The maximum length of time during which interrupts may

be inhibited depends upon the system's interrupt response time requirements,
but, to be safe, should not exceed 100 microseconds. The return address
deposited by a JST instruction is volatile data, and must be saved in a
register or special data area unless interrupts are inhibited for the duration
of the subroutine. The execution of a JST instruction delays controlled
(nonprivileged) interrupts for the next two instructions. During this time,
the subroutine may save the return address or inhibit interrupts to ensure

reentrancy.

Sometimes several tasks (executing within the same reentrant task code
or in separate bodies of code) must access or alter shared volatile data
(such as a counter) or a shared volatile data structure (such as a queue).
To ensure the integrity of the data, any operation performed must continue
to completion before another such operation can start. If the operation can be
performed in one instruction, no special precautions are necessary. For in-
stance, a counter can be incremented by an IRS instruction. If the operation
requires a small number of instructions (e.g., three instructions to decrement
a counter: LDA, SUB, STA), those instructions should be executed with in-
terrupts inhibited. Longer operations such as reading and updating a disk-
resident data base require a mechanism such as a request queue. Tasks wishing
to access the data place entries representing their requested operations on a
queue, and a single service task removes the entries and performs the opera-

tions one by one.

Similar considerations of reusability and reentrancy apply to complete

user programs (activities), and are discussed later.

ACTIVITIES

Programs executed under the control of 0S8/700 are referred to as activites.
An activity is a set of one or more tasks whose task code shares a number of
common attributes and occupies a common, continuous area of main memory — an

activity area — during their execution. Activity areas are all located in a

continuous area of main memory called the user area. Figure 2-3 illustrates a
typical memory layout for 0S/700. An activity is identified by a name of one
to six alphanumeric characters, the first character of which must be a letter.

2-14 AR22

SECTOR O l SYSTEM AREA

|

ACTIVITY AREA 1

ACTIVITY AREA 2

ACTIVITY AREA
n+1 ACTIVITY AREA 3 USER AREAS

=i====:::====::===::=

ACTIVITY AREA n

0S/700 EXECUTIVE

- SYSTEM
OVERLAY AREA SYSTEM AREA

CONFIGURATION
TABLES

FREE MEMORY FREE MEMORY AREA

‘i

Figure 2-3. Sample Memory Layout for 0S8/700 (Minimum
System — DOS Configuration)

Activity Residency

Activity code may or may not be main-memory-resident. Main-memory-resident
activities are specified when the system is configured and are always loaded
into main memory when the system is initialized. There are two categories of
main-memory-resident activities:

‘e Permanent - This category of activity remains in main memory

throughout system operation.

e Temporary - This category of activity is present when the
system is initialized, but can be overlaid during
system operation.

Activites that are not main-memory-resident are of two types: external
and disk-resident. External activities (COS only) can reside on any input
device, and are loaded into main memory as the result of an explicit operator
request. Disk-resident activities (DOS only) are stored on the system disk
and brought into main memory only when their execution is required. The ex-
ecution of a disk-resident activity can be requested explicitly by the opera-
tor, by an executive function call from a user program, or by the system

itself, and the loading and execution of the activity will then be performed

2-15 AR22

automatically by the system. The user can create new disk-resident activities,
or delete old ones, on the system disk at any time during the running of the

system.

Activity Areas

The user area of main memory (see Figure 2-3) is divided into activity
areas. There may be any number of activity areas (subject to the amount of
main memory available) for permanent main-memory-resident activities. 1In a
DOS configuration there may be, in addition, up to 17 activity areas for disk-
resident activities, and these may overlap. Permanent main-memory-resident
activities must reside in non-overlapping activity areas; these areas cannot
be used for the loading of new activities. In a COS configuration, no

activity areas can overlap.

A disk-resident or external activity is always loaded into the activity
area for which it is linked. More than one activity can be assigned to a
single activity area (as long as the activity area is not reserved for a
permanent main-memory-resident activity); however, an activity cannot be loaded
into an activity area if the area, or any portion of it, is currently being
used by another activity. This means that in a COS configuration an external
activity can be loaded into memory only when the activity area for
which it is linked is free; and in a DOS configuration, where disk-resident
activity areas can overlap, a disk-resident activity can be loaded into memory

only if no portion of the activity area for which it is linked is in use.

ACTIVITY AREA QUEUES

The system maintains a queue for each defined activity area. If a re-
quested activity requires part or all of an activity area which is currently
in use, the requested activity is placed in the queue for that activity area.
When the currently executing activity terminates, the system loads the next

activity queued for that area.

Activity Management

The execution of activities under 0S/700 is controlled by a system executive

component known as the adétivity supervisor. Activities are requested by making

a call on the activity supervisor to schedule the activity. An executive

function is provided to enable a user program to do this.

Scheduling an activity causes two distinct functions to be performed:
(1) if the activity is disk-resident, it is loaded into main memory (with
appropriate queuing procedures if the activity area is already in use); and
(2) execution of the activity is started. An activity may contain more than
one task, but every activity has a lead task, which is scheduled by the

activity supervisor to start execution of the activity. Other tasks within

2-16 AR22

the activity must be scheduled by the lead task, by other activities, or

by the system itself.

An activity can also schedule another activity without having the activity
supervisor schedule the lead task automatically. In this case, the activity
supervisor simply loads the scheduled activity into main memory; the scheduling
activity can then schedule any task in the second activity, and monitor its

execution.

When execution of an activity is finished, the activity is terminated by
calling on the activity supervisor. An executive function is provided to
allow the user to do this. An activity may terminate itself (in which case the
call on the executive also terminates the task which performed the call); al-
ternatively, an activity monitoring another activity may terminate the second

activity while the monitoring activity itself continues to run.

Activity Code Classifications

Activities, like tasks, can be classified as reentrant, reusable, or
nonreusable, depending upon the type of task code they contain and the way in
which the tasks interact. The significance of these activity classifications
is the same as that of the corresponding task classifications. A reentrant
activity may be dispatched at any time, even if it is already executing, but
a reusable activity must not be dispatched a second time until it has finished
executing. A nonreusable activity must be reloaded into memory every time it

is executed.

If the lead task of an activity — the first task to be dispatched — is
nonreentrant, the entire activity is nonreentrant. If the lead task is non-
reusable, the entire activity is nonreusable. However, the classification
of the activity as a whole is further defined by the nature of the other
tasks (if any) within the activity. If all the tasks within an activity are
reentrant, the activity as a whole is reentrant. If the lead task is re-
entrant, but the activity contains some nonreentrant tasks, the activity as
a whole can still be reeentrant if it operates in such a way that the non-
reentrant tasks are protected from being scheduled on two or more levels con-
currently. Similarly, if the lead task is reusable or reentrant, but the
activity contains some nonreusable tasks, the activity as a whole can still
be reusable or reentrant if it operates in such a way that the nonreusable

tasks are executed only once each time the activity is brought into memory.

An important difference from the user's point of view between reusability
or reentrancy in tasks and in activities is that the system is aware of the
characteristics of an activity, but not those of a task. A task is not defined

to the system until it is scheduled. At this time the scheduling routine

2-17 AR22

specifies to the TCB manager the priority level of the task and the address

at which execution is to start; these, together with the instructions that

compose the task and any parameters passed, define the task, and the TCB man-

ager knows nothing of the reentrancy or reusability of the task. Consequently,

it is the responsibility of the scheduling routine to ensure that a nonreentrant

task has finished executing, or that a nonreusable task has been loaded into

memory correctly, before it schedules the task.

An activity, on the other hand, is defined to the system when the activity

is created. The user gives the activity a name, and states to the system

which activity area it occupies and other characteristics. The system knows

which activities are resident in memory, and which are actually running, at

any one time. When an activity is scheduled, the activity supervisor protects

it from improper usage by queuing the request until it knows that the activity

is ready to be executed.

Activity Control Block (ACB)

Every activity currently resident in main memory has an Activity Control

Block (ACB), which is a 16-word block containing information about the activity

and its current status. The ACB is generated by the activity supervisor in
free memory block at the time the activity is first scheduled (unlike a
TCB, which must be generated by the scheduling routine and presented to the

task manager). The ACB remains in existence until the activity ceases to

a

be memory-resident; it is returned to free memory by the activity supervisor

when the activity terminates (if it is nonreusable), or when it is overlaid

by another activity (if it is reusable or reentrant).

The user must specify whether an activity is reentrant, reusable, or non-

reusable when it is defined to the system. This specification allows the
activity supervisor to schedule activities as follows:

e If a nonreusable activity, currently being executed, is
scheduled again, the activity supervisor reloads the ac-
tivity into main memory after its execution is terminated,
and then reschedules the activity (DOS only).

e If a reentrant activity, currently being executed, is
scheduled again, the activity supervisor immediately
places the scheduling request into the appropriate
scheduling queue. Concurrent executions of the same
activity, or any task within it, are possible.

e If a reusable activity, currently being executed, is
scheduled again, the activity supervisor delays further
scheduling of the activity until the current execution
is terminated. If the activity has been terminated,
and is still in main memory (has not been overlaid by
another activity), the activity supervisor is able to
dispatch the lead task of the activity at any time.

If the activity is not in memory, the activity super-
visor must reload the activity from disk and then
schedule it (DOS only).

AR22

~

If two activ. ties must reside ir main .emor; at the same time, the pro-

grammer must ensure that they a:e assigned to separate, nonoverlapping ac-

tivity arcas. He must configure main memory with regard to the activities
that are to be loaded. Note that the entire activity is loaded into memory,

not the currently executing task only.

Activity Generation

The way in which an activity is generated depends upon whether the

activity is permanently memory-resident, disk-resident, or external.

A permanent or temporary memory-resident activity in a DOS or COS config-
uration is loaded into memory along with the system at the time the system is
built; the user must define the name and characteristics of the activity when
the system is configured, by means of a configuration macro provided for the
purpose. The macro generates a permanent ACB containing the activity name

and characteristics.

A disk-resident activity in a DOS is defined and created by using the
online utility program Load Activity, either when the system disk is built,
or later when the system is running. The Load Activity utility allows the
user to define the name and characteristics of the activity, and translates
the link text directly into a memory image of the activity on the disk. The
utility places the activity name and characteristics into a disk directory

for later reference by the system.

An external activity for use by a COS is generated by using the Activity
Memory Image Text Generator stand-alone utility program. This program
translates the link text of the activity into a memory image of the activity
on the external medium, e.g., magnetic tape, and precedes this image with a

record defining the activity name and characteristics supplied by the user.

Activity Scheduling

Any task may schedule an activity. Activities are generally scheduled
in any of the following circumstances:

e Automatically by the system at system initialization time
(if specified when the system was configured).

e By the system in response to an operator command input through
the console. (This is the way in which most online operations
under 0S/700 are initiated.)

e By the system in response to a command in a system command file
read from the disk. (The operator initiates the reading of the
command file.)

e By an executive function call from a user program.

e By the system on behalf of a user program. (Disk~resident
peripheral device drivers are activities scheduled by the
system automatically when a user program requests I/0 to
these devices).

2-19 AR22

When a user schedules an activity, the activity supervisor performs one
or more of the following basic operations:

e If a reentrant activity is already in main memory, the activity
supervisor schedules it immediately.

e If a reusable activity is already in main memory, and has been
terminated, the activity supervisor schedules it immediately.

e If the activity is already in main memory, is currently being
executed, and is reusable, the activity supervisor reschedules
the activity as soon as its current execution is terminated.

e If the activity is nonreusable or not in memory and if the activity
area into which it is to be load is not currently being used, the
activity supervisor loads the activity into memory and schedules
it (DOS only).

e If an activity must be loaded into memory and part or all of the
activity area assigned to the activity is currently being used
by another activity, the activity supervisor delays loading the
activity until the entire activity area becomes available (DOS
only).

The logical progression of these operations is illustrated in Figure 2-4.

Operation of Activities

The system keeps track of the activity currently executing. When the
system schedules the lead task of an activity, it generates from free memory a
TCB, known as the primary TCB. It is the responsibility of the activity to
return this TCB to free memory; it can do this explicitly, or it can specify
that the TCB is to be returned by the system when the activity, or any task
within the activity, is terminated. When the system dispatches the lead task,
it records the identity of the activity associated with the task. This enables
the system to set up the correct hardware state, such as the relocated base
sector, when resuming the task after suspension, or returning to the task after
it has made a call on a system function. If the task schedules another task
within the activity, the system can thus record that the second task, and all

other tasks scheduled, are also associated with the activity.

2-20 AR22

USER
SCHEDULES
AN

ACTIVITY

IN MEMORY?

RE-USABLE?

PUT REQUEST
IN ACTIVITY
AREA REQUEST
QUEUE

[REQUEST
ACTIVITY BE
BROUGHT INTO

ACTIVITY

Figure 2-4.

? —@»
AREA FREE MEMORY AND
SCHEDULE
LEAD TASK
NO
PUT REQUEST
IN
ACTIVITY AREA —&
REQUEST QUEUE
=
SCHEDULE
LEAD TASK -
PUT REQUEST
IN ACTIVITY
AREA REQUEST a
QUEUE
REQUEST
ACTIVITY BE
BROUGHT INTO >
MEMORY AND
SCHEDULE
LEAD TASK
RETURN
- TO
USER

Logical Progression of Activity Scheduling (DOS)

2-21

AR22

When an activity schedules a second activity and wishes to monitor its
running, the system schedules a secondary task within the monitoring activity
when the second activity is ready to be executed. This method is known as
scheduling an activity with a secondary TCB. When the monitoring activity
schedules the lead task (or any other task) within the second activity, it
must specify to the system the identity of the activity associated with the
task, so that the system can record the fact that the task being scheduled is

associated with the monitored, and not the monitoring, activity.

The system provides a standard technique to enable parameters to be passed
from one activity to another. An activity can generate a parameter block
(which may or may not reside in free memory), and specify the block at the time
it schedules a second activity. The system then places the address of the
parameter block in the scheduled activity's primary TCB, thus enabling it to

access the parameters.

Restricted Activities

Activities may be either restricted or nonrestricted; this characteristic
is defined by the user at the time he creates the activity using the Load
Activity utility. The system subjects restricted activities to more stringent
control. A restricted activity can be run only on a DOS configuration with
the system integrity option, on a computer with the memory lockout option,
whereas nonrestricted activities can be run on any 0S/700 configuration (DOS

or COS) on any suitable 716 computer.

Restricted activities are supervised by the system in the following manner:

e They run in restricted mode (see the System 700 Programmers'
Reference Manual), and so cannot perform I/0 instructions,
Inhibit interrupts, or do any other hardware operation
which could interfere with the proper running of the system.

e They run with the memory lockout mask set up (see the System 700
Programmers' Reference Manual) so that they cannot overwrite any
memory locations except those in their own activity area; thus
the system and other activities are protected from being corrupted
by improper operation of a restricted activity.

e Executive function calls made by a restricted activity, and the
parameters of those calls, are rigorously checked by the
system for legality, to ensure that the activity cannot inter-
fere with the running of the system by reguesting an illegal
operation.

e Certain requests for system operations, permitted to a nonre-
stricted activity, are prohibited to a restricted activity, to
guard against interference with the system by improper usage
of these operations.

e A restricted activity which attempts to perform any of the above
illegal operations is aborted (forcibly terminated) by the system,
and an error diagnostic giving the reason for the abort is printed
on the operator console.

2-22 AR22

® System resources used — peripheral devices reserved, volumes
connected, files and likraries opened — by a restricted ac-
tivity are recorded by the sys:zem. When a restricted activity
terminates or is aborted, the system reclaims all such re-
sources which ave no: been explicitly returned by the activity,
so that they cannot bc prevented indefinitely from use by the
system or by other activities. Files being created by the
activity and left open when the activity terminates can be
either preserved or deleted; this option is specified to the
load activity utility when the activity is created. A re-
stricted activity cannot explicitly fetch or use free memory
blocks, although the system does use free memory blocks on be-
half of a restricted activity.

e A restricted activity can be aborted by a specific request
from the operator, or from a nonrestricted activity.

e If the system's supply of free memory runs low, all restricted
activities are automatically aborted to increase the supply
of free memory for the system and nonrestricted activities
to run.

e The priority level at which restricted activities can run is
limited, so that a restricted activity cannot lock out the
running of the system or other activities of higher priority.

Systems with the system integrith option configured, then, are particularly
suited to the following applications:

e Activities whose running is of vital importance can be run
as nonrestricted activities at a high priority level, while
other, less important activities can be run as restricted.
Not only will the running of the essential activities take
precedence over that of the restricted activities, but also
the restricted activities will be prevented from causing a
system malfunction through improper operation. Also, if the
system is overloaded and the supply of free memory runs low,
the essential activities will be permitted to continue running
at the expense of the restricted activities.

e Activities being checked out can be run as restricted activities.
Program errors cannot then cause a system crash; improper opera-
tion will be caught at an earlier stage by the system, and this,
together with the error diagnostic printed out, will help the
investigation of the error.

e Activities started erroneously by the operator, activities
taking longer to run or using more system resources than
expected, or activities which have encountered some error
in the course of their running, can be cleanly terminated
by use of the operator abort command.

The chief operations that are prohibited to a restricted activity, but
permitted to a nonrestricted activity, are as follows:

e Fetching and use of free memory blocks. (A restricted
activity may, however, examine the contents of free memory
blocks such as its own ACB, except in certain special cir-
cumstances in a 64K system.)

Scheduling a nonrestricted activity.
Scheduling an activity with a secondary TCB.
Scheduling a task within another activity.

Scheduling a clock activity or clock task.

Aborting another activity.

2-23 AR22

e Communications operations and executive function calls.

Storing data outside of its activity area, including in

the pseudoregisters ZCR1 through ZCR6, or executing a

privileged instruction. Therefore, bank switching,

changing to. 64K indexing, or inhibiting interrupts cannot —_
be done by a restricted activity, because these operations

require the execution of a privileged instruction. —

e Concurrent execution of more than one task within the activity.
(A restricted activity can consist of more than one task, and
can schedule these tasks at any time, but the system will not
dispatch a new task within a restricted activity until the pre-
vious task has terminated.)

e Reentrant operation. (Tasks within a restricted activity are
executed sequentially; the activity itself can be reusable or
nonreusable, but not reentrant.)

e Utilization of physical sector 0 as the base sector. (A re- .
stricted activity's base sector must be relocated to a sector
within its activity area.)

For the convenience of the operator wishing to abort lengthy operations,
the four language processor components of 0S/700 — the DAP assembler, the
linkage editor, the test editor and the FORTRAN translator — are capable of
being run as restricted activities. This also enables them to be run as
background activities with a foreground activity in progress, and to be
aborted automatically to preserve the running of the foreground activity if

free memory runs low.

CLOCK-RELATED ACTIVITY AND TASK SCHEDULING P~

The executive allows activities and tasks to be scheduled at any specified —
time interval. Intervals may be specified in units of quarter-milliseconds,
half-seconds, seconds, or minutes. The clock manager maintains a separate
gqueue for each of the four relative time units. Scheduling may occur once

(noncyclic) or at specified time intervals (cyclic).

The clock scheduling of an activity or task is identical to the normal
scheduling of activities and tasks. However, the user also specifies:

e The number of quarter-milliseconds, half-seconds,
seconds, or minutes

e Whether scheduling is to be noncyclic (once) or cyclic
(repeated)

Each time a clock activity or clock task is requested, an entry is put in
the appropriate clock timer queue. At regular intervals (as specified at

system configuration time) the entries in each clock timer queue are examined.

First, entries in the quarter-millisecond queue are scanned. Any entries
that have reached their specified time interval are scheduled. Cyclic
entries are reset and left in the queue, while noncyclic entries are removed -~

after they have reached their specified time interval.

2-24 AR22

Next, the clock manager checks if a half-second interval has been
reached. If it has, entries in the half-second gqueue are scanned and processed
as described above. If the second interval has been reached, entries in the
second gqueue are scanned and processed. When the minute interval is reached,
a similar operation is performed. After all entries whose time intervals have

expired ar. scheduled, the executive returns to normal execution.

INTERRUPT PROCESSING

A number of I/0 or processor-generated interrupts may occur during the

processing of a task.

The System 700 central processor recognizes two basic types of interrupts:
privileged and nonprivileged. When either occurs, the effect of the interrupts
on the current task depends on the interrupt mode under which the processor is
currently running. Interrupt modes include:

e Inhibited interrupt mode - In this mode, execution of the
current task can be interrupted only by privileged interrupts.
The privileged interrupts are: memory lockout, power failure,
watchdog timer, trace, and stack under/overflow.

® Enabled interrupt mode - In this mode, execution of the cur-
rent task can be interrupted by any interrupt.

When an interrupt which will suspend current execution of a task occurs,
the executive performs the following actions:
1. Saves the status of the interrrupted task.
2. 1Identifies the type of interrupt, and transfers control
to the response code that will process that interrupt.

3. Resumes execution of the interrupted task when the
processing of the interrupt is completed, unless a
task that has a higher priority than the interrupted
task has been scheduled in the meantime.

The registers and status of the interrupted task are saved in an area of
main memory referred to as a suspended save area. There is one such area for
each priority level; hence the fact that only one task can run on each level

at any one time.

There is a special register save area associated with each privileged
interrupt. This is necessary because a privileged interrupt can occur before
execution is resumed after a nonprivileged interrupt, in which case the sus-

pended save area will already be in use.

2-25 AR22

QUEUE MANAGEMENT

0S/700 allows dynamic creation and manipulation of queues. Specifically,
the user can create a queue, add an item either at the beginning or at the end

of the queue, or remove an item from the beginning of the gqueue.

DISK FILE MANAGEMENT

0S/700 provides management of files on the system disk and on other disks
attached to the system — fixed-head, moving-head or cartridge disks. These
logical I/0 capabilities are in addition to the capability of performing direct

physical I/0 to a disk on behalf of a user.

The user can create and manipulate any number of named disk files, and
treat the data contained within the files as groups of logical records. If
desired, the user can organize his files into named groups known as libraries.
0S/700 provides the following features:

e Files may have either fixed or variable length records.

e Fixed length record files may be accessed either sequentially
or directly.

Variable length record files may be accessed sequentially only.

°

e Disk-resident file and library directories.

e Password protection at both file and library level.
°

Files can reside on removable disk volumes, which can be inter-
changed while the system is online.

e File sizes do not have to be defined on creation; they can be ex-
panded automatically when data is added. N

e Fast transfers of file data through overlapped disk I/O and
multiple buffering, with anticipatory buffer loading.

Logical I/0 is described in the 05/700 File Management manual.

PHYSICAL I/O

In addition to the preceding file management capabilities, 0S/700 provides
a physical I/0 interface through which a user is allowed to directly control I/0
operations, and transfer data between main memory and any I/0 device in the
system. Physical I/O operations can be performed on the following devices:

e ASR-33, ASR-35, KSR-33
Paper tape reader or punch
Card reader, card punch, and card reader/punch
Removable fixed-head, and cartridge disk
7- and 9-track magnetic tape equipment

Line printer

Cassette tape

2-26 AR22

Device Co:.frel Block (DCB)

Operations affecting I/0 requests are controlled by the data previously
stored in a device control block (DCB). Before starting physical I/0O opera-
tions, the user must have previously created a DCB containing:

Type of I/0 device

Logical unit number

Data mode (ASCII, binary, etc.)
User identification

Location of the status block

Location for return after I/0 operation completion

Once the DCB has been created, the desired device must be reserved. When
the device becomes available to the user, he can then request physical I/0
operations for the device. All I/O requests for each device are placed in

separate queues and are acted upon according to their priority.
At the end of the physical I/0 operations for the reserved device, the
user releases the I/0 device so that is is available to satisfy other requests

that may have been placed in the reserve queue.

Disk Resource Manégement

A disk volume must have a user-visible name (unique at an installation);
it may contain a label record. Full resource management is provided only on
labeled volumes. There are two levels of resource management available:

e Disk space allocation and deallocation on labeled volumes

e Location of a currently mounted named volume or location
of a unit available for mounting another volume (labeled
or unlabeled)

Physical records on a disk volume are grouped into logical work areas
that are allocated and deallocated upon request. A map of current disk work

area usage is maintained on the volume.

A request to be connected to a particular named volume involves a search
of currently mounted volumes for the desired name, and if necessary, a search

for an unused physical unit on which to mount the desired volume.

When necessary, the operator is told which volume to mount on which
physical unit (removable disk only). When the volume is mounted, the contents

of the label record, if present, are read and verified.

Bcth levels of disk management are available on labeled volumes to the
physical I/0 user. Both levels are utilized on behalf of the logical I/0
user, although this management is not visible to the user. Logical I/0 is

supported only on labeled volumes.

2-27 AR22

OPERATOR INTERFACE

The user has the capability of sending messages to the operator during

execution of task code and, when required, of accepting keyboard input from

the operator in response to such messages. Thus, the user can include online
interaction with the operator as part of a task code. When two or more -
messages are sent to the operator, the operator has the capability of identi-
fying the message to which he is responding by preceding his response with the
message number.
Special system commands (a dollar sign followed by a 2-letter mnemonic)
can be issued by the operator at any time. These commands are:
$SA - Schedule an activity. In COS configurations,
the activity must be main memory-resident be-
fore the $SA command is issued.
$LA - Load an external activity into main memory from
a specified (nondisk) input medium. This com-
mand is supported only in COS systems.
$AB - Abort a restricted activity. This command is
supported only in DOS comfigurations with the
system integrity option.
$CI - Start executing a system command file. This com-
mand is supported only in DOS configurations with
the system command input option. Additional
system commands that may be included in a system
command file are $CO (Consonant Command) and
$OD (Output Device Command) .
ey

$TR - Terminate execution of a system command file.
This command is supported only in DOS config- —
uration with the system command input option.

For more specific details concerning operator interface, refer to Section

IIT in the 0S/700 Operator's Guide.

COMMUNICATIONS

A full range of communications capabilities is available under 0S/700.
Programs may send and receive data in the form of messages to and from commun-
ication terminals, control the acknowledgement of received data, obtain and
change the status of terminals and lines, and receive information concerning

the validity of data and the integrity of the communications hardware in the

08/700 system.

Programs utilizing the communications functions of 0S/700 are run as
communications tasks, and request the services of the 0S/700 Communications
Supervisor through communications macro routines. The specific characteristics
of communication lines and terminals are established at system configuration
time, but can be modified to some extent by user communications tasks. Di-
rect communication with and control of remote terminals are normally handled ~~

by the Communications Supervisor; this includes polling (requesting a terminal —

2-28 AR22

to send a message), terminal selection (determining if a terminal is ready
to receive a message), code conversion, error detection and correction, and

maintaining the proper line procedure for the terminals.

For a full description of the communications facilities available under

0S/700, the user should refer to the 0S/700 Communications manual.

EXECUTIVE FUNCTION CALLS

The following describes the interface between the system and the user -

executive function calls — and their use in requesting executive functions.

0S8/700 User-System Interface

The user program can interface with 0S/700 only through executive function
calls. O0S/700 interacts with user activities and tasks only when requested
to do so by a executive function call. When the user is coding a program and
wants the program to call on an exeéutive function, he codes into the program
an executive function macro call. Executive function macros are contained in
the System Macro Library, MACLIB. When the program is assembled, the assembler
expands the macro call into the set of instructions required to call the ex-

ecutive function.

To simplify the writing of reentrant coding, the system supplies the
user with six pseudoregisters — ZCR1 through ZCR6 — which are treated by
the system in a manner similar to the hardware registers. These registers
are located in physical sector zero, and must be referenced indirectly
through address constants (DAC's) if the user program runs with relocated base

sector.

When the user program makes an executive function call from which a
return to his task is to be made, the status of the various registers on entry
to the executive is as follows:

e Pseudoregisters ZCR1l, 2ZCR2, and ZCR3 are saved.

Pseudoregisters ZCR4, ZCR5, and ZCR6 are not saved.
Hardware registers B and S are saved.

The A-register contains the function call return address.

The X-register contains the address of the function call
parameter list.

There are three types of executive function macros:

e Those that request executive functions. These macros generate
executable code.

e Those that define data for executive functions. They are:
1LCBS$, VCBS$, FCBS, DCBS, and TCBS. The TCB$ macro is a
special form of a data defining executive macro which de-
fines symbolic names for accessing specific words within
a task control block. These macros do not generate executable
code.

-29 AR22

N

e The execu?ive function macro — LNK$ — that provides the inter-
face or linkage between the user activity and the 05/700
Executive Function Manager.

The executable code required in a user program to perform an executive
function call is as follows:

e The X-register must be loaded with a pointer to a list of
parameters that define the arguments (devices, buffers etc.)
to be operated on by the executive function. Pseudoregisters
may not be used as a parameter list for an executive function
call.

e A call (JST) is made to the subroutine ZALINK, which provides
the linkage between the user program and the system.

e An additional parameter word is provided to define which
executive function is to be executed.

"Each executive function macro called by a user program expands into the
code_described above. The user can optionally request the macro to generate
the parameter list itself (an inline parameter list) by supplying the parameters
in the macro call. Alternatively, he can code the parameter list itself in some
other part of his program (an outline parameter list), and load the pointer
into the X-register himself; in this case, the executive function macro call

will expand into only the second and third of the three items described above.

The choice between inline and outline parameter lists is up to the user,
although there is no alternative to the use of outline parameter lists in re-
entrant coding (see the following section). Inline parameter lists are quicker
to code, and the macro itself performs some checks on the validity of the param-
eters when it is expanded; thus inline parameter lists can reduce the number
of initial coding errors when a user program is first generated. Outline
parameter lists, however, save code, since the macro must generate an extra
word (a jump around the parameter 1ist) if an inline list is used; also with
care it is often possible to use the same outline parameter list for two or
more executive function calls. Outline lists also help the readability of a
program listing, since each parameter can be documented with a suitable comment.
An outline list should be used if any of the parameters in the list has to be
changed or set during program execution, although the user interface has been

designed to avoid the necessity of doing this to a large extent.

7ALINK is a l6-word subroutine which forms part of the user program. It
is generated by a call on the LNK$ macro. Every module of the user program
(i.e., each assembled segment of code having an END statement) which contains
an executive function macro call must have access to the subroutine ZALINK.
If the user program contains only one module, it should contain one call on
LNK$. If the user program has two or more modules containing executive function
macro calls one module should contain a call on LNK$, and be headed by the
statement ENT ZALINK; all other modules containing executive function macro

calls should contain the statement EXT ZALINK. Alternatively, a LNKS$ call

2-30 AR22

can be coded into each module. The subroutine ZALINK periorms some register
operations, and then transfers control to the 05/700 Executive functirr man-
ager, either by means of a direct subroutine call, or (in -ae case of a re-

stricted activity, which operates in restricted mode) by generating a memory

lockout +violation interrupt.

The addresses of the six pseudoregisters ZCR1 through ZCR6 are also de-
fined by the call on LNKS$. Every module of a user program which references
these pseudoregisters must have access to their definitions. If the user
program comprises more than one module, the module containing the LNK$ call
can be headed by the statements ENT ZCR1l, ENT ZCR2 etc., and modules refer-
encing the pseudoregisters can contain tne statements EXT ZCR1l, EXT ZCR2 etc.
Note that all these pseudoregisters are located in physical sector 0, and that
if a user program runs with the base sector relocated to some other sector,
it cannot reference the pseudoregisters through a direct memory reference in-
struction; it must reference them indirectly through a series of links of the
form DAC ZC$1l, DAC ZCR2 etc.

Restricted activities, which cannot alter the contents of locations out-
side their activity area, cannot use the pseudoregisters. Activities running
in a 64K system (see "Memory Management in 64K Systems" later in this section)

can access the pseudoregisters only when the A-bank is set to bank 0.

In many executive function requests, the parameter list points to data
structures generated by the user, or specifies words and buffers within the
user program into which the system is to transfer information. When a re-
stricted activity makes an executive function call, the system checks that all
such words, buffers and data structures actually do lie within the user's
activity area; if they do not, the activity is aborted. 1In the case of a re-
stricted activity running in a 64K system, all such user—generated data
structures must lie in the B-space of the activity area. (Refer to "Memory

Management in 64K Systems." later in this section.)

Executive Function Macro Calls

The user can request certain executive functions by means of executive
function macro calls. An executive function macro call consists of (1) a
macro name ending in a dollar sign ($) and (2) a parameter set. An example of

an executive function macro call is illustrated below:

Operation Operand
MACS parameter 1, [parameter 2},...,[parameter n]

2-31 AR22

MACS$ - The executive function macro name

parameter 1, parameter 2 ,..., parameter n - The
macro call parameters, separated by commas.
Optional parameters are enclosed by brackets.
(In this example, parameter 1 is required).

The parameters are positional (i.e., if a parameter is omitted, its position
must be preserved by a comma).

Another example of the macro format is shown below:

Operation Operand
MACS buffer address, range

buffer address - The address of the buffer

range - The integer giving the max-
imum number of words in the
buffer

If the macro call is used as defined in this example, it could be written
as follows:

MACS BUFF,13 BUFF AND 13 ARE DEFINED PARAMETERS

BUFF BSZ 13 ’

Returns From an Executive Function Call ,

After an executive function call has been processed successfully and a
normal return is taken, the next instruction after the executive function call
is executed. If the executive function call is not successfully processed, an
‘error return is taken to the address of a routine, specified in the parameter
list, which is to process the error. In such cases, the A-register will con-

tain a code which indicates the type of error.

When control returns to a user task from an executive function call, the
status of the various registers is as follows:

e Pseudoregisters ZCR1l, ZCR2 and ZCR3 are restored.
Pseudoregisters ZCR4, ZCR5 and ZCR6 are not restored.

Hardware registers B and S are restored.

The A-register contains the error code if the error return
is taken. Otherwise, the contents of the A-register are
undefined.

e If an executive function provides a return parameter it will
appear in the A- or X-register. Otherwise, the contents of
these registers are undefined.

2-32 AR22

e The keys, banks, and indexing mode are restored, extended
addressing mode set, interrupts enabled, and the J-base
set to the J-base value of the activity in which the
task resides.

NOTE: The contents of the pseudoregisters and hardware
registers are not guaranteed, when a Wait For
I/0 function (WIO$) is used in which the 1I/0
status block address pointer parameter is omitted.

Outline Parameter Lists and Reentrant Coding

When a variable parameter is used in a reentrant activity or task, the
standard inline macro parameters cannot follow the macro call name. Instead,
the parameters must be stored in an outline parameter list in the data section.
In addition, the user must dynamically store his variable data in blocks ob-
tained from free memory and may use three of the system pseudoregisters —
ZCR1, ZCR2, and ZCR3 — to save the addresses of these blocks.

An example of an outline parameter list is shown below:
LDX LIST ADDRESS OF PARAMETER LIST PUT IN X-REGISTER

MACS (X) EXECUTIVE FUNCTION MACRO CALL
-— NORMAL RETURN

BUFF BéZ 13 THIRTEEN WORDS RESERVED FOR BUFFER
LIST DAC **] ADDRESS OF OUTLINE PARAMETER LIST
DAC BUFF BUFFER ADDRESS
DEC . 13 RANGE

NOTE: If any of the optional parameters is omitted, a BSZ 1
entry should replace the appropriate DAC entry in the
outline parameter list.

A macro call with an outline parameter list must include
an X enclosed in parentheses (X) in the operand field as
illustrated in the above example.

The description of each executive function macro call below includes the

format required for the outline parameter list as well as an example of it.

If a reentrant program utilizes executive function calls containing
variable parameters, it must first issue a GBLS$ function call, which has fixed
parameters stored in memory; the GBL$ function call requests a fixed-size
memory block. This block can then be used to store the outline parameters
needed to make reentrant calls to other eéecutive functions, including requests
for other variable size memory blocks. When the RBL$ function call is used
to return the memory block obtained through the GBLS function call, the outline
parameters in the RBL$ function call can be stored by the user in the block
being returned. Refer to the TMAS$ function examples for an illustration of

this technique.

2-33 AR22

When free memory blocks are used for outline parameter lists or when any
outline list is reused, optional parameters which are to assume the default

value must be set to the default value.

User and System Domains

Execution of code under control of 0S/700 can take place in either the
system domain or the user domain. The system domain is defined as:
No relocation of base sector
Extended addressing mode only
Single precision only
Stack interrupt disabled
Trace interrupt disabled

Bank 0 is always selected

Normal (nonrestricted) mode with no memory protect.

Depending on the program requirements, the user can select any of the following
programming capabilities to define a user domain:
e Relocation of the base sector
Extended addressing mode only
Single- or double-precision numbers
Stack interrupt enabled
Trace interrupt enabled
RESTRICT mode and memory protect (restricted activities only)

when control returns to the user program after an executive function call,
the status of the above options in the user program is restored to what it
was before the function call was issued (except that interrupts are enabled

and the extended addressing mode is set).

MEMORY MANAGEMENT IN 64K SYSTEMS

0S/700 supports the running of activities in up to 64K of main memory.
The management of activities in over 32K of memory requires special considera-

tions, which are discussed in this section.

Support of over 32K of memory must be specified by the user at the time
the system is configured; this support is provided only in DOS configurations.
For reasons which will become apparent, the layout of the system components in
memory is modified for systems supporting over 32K (known for convenience as
64K systems), in order to locate the free memory area at the bottom of memory.
The system layout shown in Figure 2-3 is thus replaced by the layout shown in

Figure 2-5 for 64K systems.

2-34 AR22

0_
SECTOR O } SYSTEM AREA
FREE MEMORY FREE MEMORY AREA
SYSTEM

OVERLAY AREA

CONFIGURATION

TABLES
AB SYSTEM AREA

0s/700
EXECUTIVE

140000 —
ACTIVITY AREA 1

ACTIVITY AREA 2

ACTIVITY AREA 3 USER AREA
'100000 — [~ —~_ A

ACTIVITY AREA n

*177777 -

Figure 2-5. Sample Memory Layout for 64K DOS Configuration

Hardware Operation in 64K

Physical addressing in machines with more than 32K of memory is a natural
extension of 32K addressing. Locations within the first 32K are addressed from
0 to '777777, and locations beyond the first 32K are addressed from '100000
upwards, up to a maximum of '177777. However, because the machine interprets
only 15 bits of an (indirect) address word as an address, only 32K of memory
is program addressable at any one time. For programming convenience, therefore,
the memory is a machine of over 32K capacity is divided into banks of 16K
each, numbered from zero onward. Bank 0 thus comprises locations 0 through '37777,
and so on up to bank 3 (if present), which comprises locations 140000 through
'177777. The machine hardware contains a bank register, which permits the pro-
gram to select which particular two banks (32K) of memory are to be program
addressable at a particular time. The two selected banks are known as the A-bank
and the B-bank.

2-35 AR22

LOGICAL AND PHYSICAL ADDRESSING

Addressing works as follows. A program, by means of direct or indirect
addressing (with or without indexing), references an address between 0 and
v77777. This address is known as the logical address. If the logical address
lies between 0 and '37777, the hardware interprets it as a physical address in
the A-bank; if the logical address lies between '40000 and '77777, the hardware
interprets it as a physical address in the B-bank. For example, if a program
is running with the contents of the bank register as (1, 3); i.e., with bank 1
as its A-bank and bank 3 as its B-bank, then any logical address from O
through '37777 referenced by the program will be mapped onto physical bank 1
(physical locations '40000 through *77777), and any logical address from '40000
through '77777 referenced by the program will be mapped onto physical bank 3
(physical locations '140000 through '177777). Thus if the program addresses
logical location '1000, the hardware will interpret this as a reference to
physical 1ocati6n '50000, and if the program addresses logical location '65000,
the hardware will interpret it as a reference to physical location '165000.

(See Figure 2-6.)

PHYSICAL
MEMORY ADDRESSES
BANK REGISTER SETTING: (1.3) 0
BANK O
LOGICAL , ~
ADDRESSES 137777
0 " 140000
BANK 1
125116 ————d ‘65116
A BANK 177
137777 I—— 7777
140000 ' 100000
147703 BANK 2
B BANK
1777171 1137777
1140000
1147203
BANK 3
1177777

Figure 2-6. Mapping of Logical Addresses Onto Physical Memory Locations

2-36 AR22

Operation of Activities in 64K

Clearly, to operate conveniently in a given bank N, a program must have
either its A-bank or its B-bank set to N. 1In a 64K 0S/700 system, the system
executive resides in bank 0, and runs at all times with its A-bank set to zero.
User activities may reside in any of the four banks 0 through 3, although the
executive tsually occupies all of bank 0. Device drivers, which may be
memory-resident (thus lying contiguous with the system executive in memory)
or disk-resident (thus lying in an activity area), may reside in bank 0 or bank
1. An incoming interrupt causes the hardware to reset the bank register to
(0, 1), and as both the system executive and the drivers must be capable of

handling interrupts, the above scheme is convenient.

When an activity makes a call on the system executive, the executive must be
able to communicate with the activity in order to fetch and store parameters
of the function call. 1If, as is usually the case, the call is being made from
a bank other than bank 0, the system accesses the parameters by running with
its B-bank set to the bank from which the function call is being made. Address
parameters passed to the executive, such as the address from which the function
call is being made, the error return address, and parameter poknters, are
communicated as logical addresses. For the system to be able to access these
easily, parameter addresses must be seen by the system as B-bank addresses; i.e.,
logical addresses between '40000 and '77777. Therefore, the activity must be
linked so that all executive function calls and parameters of those calls, and
the subroutine ZALINK, lie in the activity's B-bank. This means that if an
activity lies wholly within one bank (other than bank 0), this must be its
B-bank to allow it to make executive function calls, and the activity must be
linked to run in logical addresses between '40000 and '77777.

Free memory blocks, which must be program addressable by the system
executive when running with banks (0, B) set up (where B might be any other
bank), are constrained to reset in bank 0.

An activity area may cross a bank boundary. For simplicity of handling,
activity areas must occupy contiguous areas of memory, so the two banks in
which an activity runs will always be adjacent banks, never disjoint; the
lower bank will be the activity's A-bank, and the upper bank will be its B-bank.
All executive function calls and their parameters must lie in the upper bank,
unless the lower bank is bank 0. One exception to this rule is input/output
buffers, which are permitted to lie in either the A-bank or the B-bank.

This is because DMA and DMC reference memory locations by physical and not
logical addresses; consequently the system must in any case translate logical
addresses of I/0 buffers to physical addresses. The user can optionally

2-37 AR22

specify 1/0 buffer addresses to the executive as physical instead of logical
addresses. An activity which crosses a bank boundary will normally run with
banks (A, B) set up, and when the system is called, banks will be switched to
(0, B). An activity which does not cross a bank boundary will normally run
with banks (0, B) set up (unless it lies in bank 0, in which case, it will

run with banks (0, 1) set up).

The term "B-space" denotes that portion of an activity area which may con-
tain executive function calls and parameters; i.e., that portion of an activity
area which is program addressable when running with banks (0, B) set up, where
B is the activity's B-bank. Thus an activity's B-space is that portion of its
activity area which lies within its B-bank, unless its A-bank is bank 0, in
which case its B-space consists of all of its activity area lying in banks 0
and 1 (in this case its B-bank must be bank 1, since its A- and B-banks must be

contiguous) .

An activity's base sector (J-base), if other than physical sector 0,
must be accessible by the system executive when starting or resuming a task
within the activity, in order to set the relocated X-register correctly. This

means that an activity's J-base must also lie in its B-space.

The Load Activity utility sets into the activity directory on disk the
banks that are to be set up when the activity is started by the system. If the
activity resides entirely within one bank, bank 3 say, the default banks (0, 3)
will be set up. If the activity resides in two banks, banks 1 and 2 say, the
default banks (1, 2) will be set up. In specialized applications, a nonrestricted
activity can perform its own bank switching, and a user may require an activity
to run with some A-bank other than the default one set up. For example, an
activity residing wholly within bank 2 (default banks (0, 2)) could be required
to communicate directly with another activity residing in bank 1. The Load
Activity utility allows the user to specify an A-bank other than the default
one, and the system records the banks set up at the time an activity makes an
executive function call or is suspended, so that if the activity itself has
switched banks or entered the 74K indexing mode, this state is preserved when

execution of the activity is resumed.

Occasionally, it may be necessary for an activity to reside entirely
within its A-bank. For example, an activity residing within bank 2, and running
with banks (1, 2) set up (as in the example above), may wish to communicate with
an activity residing wholly within bank 1. To give consistency of meaning to
the logical addresses used by the first activity and those used by the second
activity, it is desirable for the second activity to run with bank 1 as its
A-bank. Such an activity cannot be started by the system, nor can it make ex-
ecutive function calls; however, it can be scheduled, started and terminated by
the first activity. The Load Activity utility makes provision for the creation

of these specialized activities.
2-38 AR22

Because the system pseudoregisters and free memory lie in bank 0, they
cannot be accessed by an activity running in normal indexing mode with its
A-bank set to a bank other than bank 0. A nonrestricted activity residing
in two banks other than bank 0, however, can switch banks from the initial
setting provided by the system on initiation of the activity, or enter 64K
indexing mcde, in order to use these facilities. A restricted activity
cannot perform bank switching or change of indexing mode, but in any case,
it cannot change the contents of the pseudoregisters or free memory blocks,

owing to the memory lockout protection.

2-39 AR22

SECTION III
SCHEDULING TASKS

TASK EXECUTIVE FUNCTIONS

The eight task functions — Task Control Block (TCBS$), Schedule Task (STSS),
Suspend Task (SUS$), Terminate Task (TMT$), Create a Task Control Block (CTCS),
Schedule a Task Control Block (STC$), Connect Clock Task (CCLS$), and Disconnect
Clock Task (DC$) — are used to:

@ Define a series of mnemonic offset symbols for accessing the
individual words of a TCB.

® Schedule a task during execution of the current task.

Suspend execution of the current task so that any other tasks with
higher priorities can be dispatched.

Indicate that a task is terminated.
Create a task control block (TCB) without scheduling the task.
Schedule a task for which a TCB has already been created.

Schedule a clock task to be executed after a specified delay or at
regular intervals (cyclically).

e Discontinue execution of a cyclic clock task.

User and System Pfiority Levels

The 0S/700 executive dispatches tasks on a priority basis. The executive
provides for a maximum of 16 absolute priority levels; the number of levels in a
given system is determined at system configuration time. The absolute priority
levels are divided into two types: system levels and user levels. The three
system levels, always configured, are the highest priority absolute levels and
are reserved for use by executive tasks. The user levels are below the system
levels in priority and are the levels on which user tasks and activities are
executed. A maximum of 13 user levels can be specified at system configuration

time.

The absolute priority levels are assigned numbers from 0 to 15; 0 being the
highest priority level and 15 the lowest priority level. The system leywel
numbers are the first three absolute level numbers (0 through 2). The user
levels are assigned under level numbers 1 through S (S is the number of user
levels specified at system configuration time). User level numbers are used by
the STS$, STC$, CCL$, SACS and CCAS$ executive function action routines when
scheduling tasks or activities. In these action routines, the priority level
number specified in the function call parameter list is always biased by the

3-1 AR22

number of system levels to determine the absolute level on which the task or
activity will be scheduled. The user is prevented from running on any level

reserved for the executive.

For executive functions that provide for a user level to be specified, a
user level number of zero has the same effect as if this parameter were
omitted: a default priority level number is used. Usually the default level
for the task is the default level for the activity in which the task resides.
If a user level number is specified which is greater than (lower priority) the
lowest priority user level in the system, the lowest priority user level will

be used.

Task Control Blocks

Associated with each scheduled task is a task control block (TCB). The
TCB contains task-related data including: a status word, task entry address,
task absolute priority level number, task parameters 1 and 2, and the address of
the ACB associated with the activity in which the task resides. If the TCB is
a secondary TCB, it has the address of the lead task's TCB. Normally, the user
need not concern himself with the detailed contents of the TCB or with the
generation of TCB's. When tasks are scheduled by the STS$ action routine and
activities are scheduled by the SAC$ action routine, a TCB is automatically
generated using the call parameters and scheduled. The user can also generate
a TCB via the CTCS executive function and subsequently schedule the TCB using

the STCS executive function.

All TCB's generated by the system on scheduling an activity, or created by
use of the CTCS$ or STS$ executive functions, are in free memory blocks. In a
64K system, all such blocks reside in physical bank 0. In order to access the
contents of a TCB in a 64K system, e.g., to fetch parameters from the TCB, a
user task must have the A-bank set to physical bank 0, or must access the TCB

in 64K indexing mode.

Scheduling Tasks

When scheduling tasks, the user must remember that tasks differ from
activities in two ways. First, tasks must be resident in main memory before
they can be scheduled; this is not the case with activities. Second, the user
must not schedule a reusable or nonreusable task before the previous execution
has terminated. Further, a nonreusable task must not be rescheduled without
being reloaded by rescheduling the nonreusable activity in which it resides.
These rescheduling restrictions do not apply to DOS activities because the
executive automatically handles activity loading and dispatching. The user must
make sure that these task restrictions are considered when he issues STS$ and

STCS function calls to schedule tasks.

3-2 AR22

NOTE: When a task is scheduled it e.. 'rs a priority level schedule
queue from which it is later dispatched. Tasks are dis-
patched by the executive after it processes interrupts or
when the previous task terminates or suspends. Normally, at
least one interrupt (the clock) occurs frequently enough so
that the executive dispatches at other times than when a
tasl terminates or suspends. When a task schedules another
task on a higher level, the scheduled task normally has not
been dispatched when the scheduling task regains control,
unless the return to the schedu’ing task was interrupted. If
it is desired to dispatch a task scheduled on a higher level
immediately, tiie scheduling function call (STS$ or STCS)
should be foliowed by a suspend function call (SUSS).

Task Entry

When a given task's TCB is at the beginning of a priority level scheduling
queue that is the highest priority level of any tasks scheduled, that task is
dispatched by the executive. A dispatched task gains control at the task entry
address. When control is transferred to the task, the X-register contains the
address (TCB address) of the first word of the task's TCB. It is the user's
responsibility to save this TCB address so that the TCB may be returned to free
memory; this can be done by giving the TCB address as a parameter in a TMTS$ or
TMAS$ function call when the task or activity is terminated. A pseudoregister
(ZCR1, ZCR2, or 2CR3) can be used to store the TCB address if desired.

The TCB address is also needed to give the task access to the two param-
eters (parameter 1 and parameter 2) specified when the task was scheduled. The
user gains access to these parameter words by having the address of the TCB in
the X-register and performing a LDA ZTCBPl,l and a LDA 2ZTCBP2,1 operation.
ZTCBP1l and ZTCBP2 are defined by a TCBS$ macro call as the relative displace—

ments within the TCB where parameter 1 and parameter 2 are located.

It is the task to which the parameters are passed that determines the
significance of the parameters just as it is the subroutine and not the subrou-
tine caller that determines the significance of the argument list. If more than
two parameters are needed to be passed to a task, it is suggested that the Free
Memory Parameter Passing Technigue described in Appendix G be used. This param-
eter passing technique must be used by any lead task of an activity that is
scheduled with parameters by a FORTRAN program or by the Utilities.

The secondary task of a monitoring activity needs the TCB address so that
it may determine if the second activity was successfully loaded into main
memory. It is also needed to schedule the lead task of the second activity.

The secondary task gets the TCB status word by having the secondary TCB address
in the X-register and performing a LDA ZTCBST,l operation (see the description
of the SAC$ executive function for the significance of the status word). The
TCB address of the lead task is obtained by having the address of the seccndary
TCB in the X-register and then performing a LDA 2TCBPT,l operation. The lead
task TCB address can then be used in a subsequent STCS function call to schedule

the lead task of the second activity.

3-3 AR22

Suspending Tasks

A task can be suspended (1) by an interrupt and (2) by a voluntary suspen-
sion. A user task has no control over interrupts. Voluntary suspension
involves executing a SUS$ function call. Although the executive handles both

suspensions in the same manner, there is a distinction.

Each time an interrupt suspends a task, the executive allocates the system
to higher priority tasks. If no higher priority tasks are scheduled, execution

of the interrupted task is resumed after the interrupt is processed.

When a task voluntarily suspends, the scheduling queue for the level from
which the task was dispatched is "locked" (other tasks in that scheduling queue
cannot be dispatched). Tasks can be dispatched from any other scheduling gqueue
(level); the system is not necessarily idle during the voluntary suspension of a
task. But if a task is in a continuously suspending loop, system resources can
be wasted if no tasks are scheduled on other priority levels and tasks are

scheduled on the priority level of the suspended task.

The SUS$ action routine also ensures that a task scheduled on a higher
priority level by a currently executing task will be immediately dispatched.
To do so, the STS$ or STC$ function call in the currently executing task must be
followed by a SUS$ function call.

Terminating Tasks

Unlike activities,.tasks can terminate only themselves. When a task
terminates by using a TMT$ or TMAS$ function call, it allows the executive to
dispatch any other scheduled task.

Because a task does not regain control after it terminates, it must replace
all allocated system resources that have not been passed to other tasks in the
system. This requires that before terminating, the task must make sure all 1/0
operations initiated by the task are completed, release all resérved 1/0
devices, close all opened files, close all opened libraries, return all blocks
obtained from free memory, and disconnect all explicitly connected volumes. One
block of free memory allocated to that task is the TCB generated when the task
was scheduled. This block may be released by giving the TCB address as a param-
eter in the TMT$ or TMAS$ function call. Other ways of returning the TCB to
free memory are by making an explicit RBL$ (return block) function call, “or by
converting the contents of the TCB and using it in a STCS call to schedule a

further task, whose responsibility it then becomes to return the TCB.

3-4 AR22

Normally, a task terminates by issuing a TMTS$ function call but if it is
the last task of an activity, the task and activity are terminated by a TMAS
function call. When an activity terminates, it must also make sure that any
clock task is disconnected as well as releasing all allocated system resources.
Clock tasks must be disconnected because the task will be resident only as long

as the activity is.

Clock Tasks

The two clock task functions are used to initiate the scheduling of clock
requested tasks. The functions are Connect Clock Task (CCLS) and Disconnect
Clock Task (DCLS).

Clock tasks must remain resident in main memory as long as those tasks are
connected to the clock. Care should be taken to ensure that the activity
containing the clock tasks does not monopolize an activity area to the exclusion

of other activities which use the same, or an overlapping area.

Clock tasks can be scheduled to be executed once after a specified delay
(noncyclic task), or repeatedly at regular intervals (cyclic task). A cyclic
task must be disconnected when no furtehr executions of the task are required; a

noncyclic task does not have to be disconnected.

Care must be taken to ensure that a clock task is not scheduled cyclically
at too short an interval. Otherwise, if the task is scheduled a second time
before it has finished executing the first time, scheduling requests may mount
up until the system runs short of free memory blocks for TCB's. Alternatively,
if the task calls an executive function which performs an implicit terminate
task operation, the second scheduling of the clock task could be dispatched,
which would lead to trouble if the clock task were not reentrant. The length
of the chosen interval must obviously depend on the nature of the work to be
done by the task.

Canned TCB's

TCB's are normally fetched from free memory when required. All TCB's
generated by the system executive for scheduling a user task - primary and
secondary TCB's for scheduling an activity, and TCB's created by the Create TCB
(CTCS$) and Schedule Task (STS$) executive functions - come from free memory, and
it is the responsibility of the task to ensure that these are returned to free
memory. It is possible, however, for the user to generate a TCB himself within
his activity area - a canned TCB - and use this to schedule a task by means of
the Schedule TCB (STC$) executive function. Normally it is more convenient to
avoid this. If the user wishes to use this method, however, a number of rules

must be observed.

3-5 AR22

e The method should not be used in a 64K system, unless the user can
guarantee that the canned TCB will lie within physical bank 0 or 1.
This is because the TCB manager, which examines and services gusues
of TCB's, operates always with its A-bank set to bank 0, and its

B-bank set to bank 1.

e The user must ensure that the TCB is not returned to free memory by
the scheduled task. It must not be specified as a parameter of a
TMTS or TMAS call.

e The TCB control word must be set up correctly, according to the lay-
out specified in Appendix H, Table H-5. Bits 5 through 8 must con-
tain the priority level with the correct bias added to convert the
user priority level to the corresponding system level; i.e., with
the value 2 added. Bit 12 must be set to indicate that this is a
user task. All other bits in this word must be zero.

e The ACB address of the associated activity must be explicitly set in
word 7 of the TCB (see Appendix H, Figure H-7).

Tasks Within Restricted Activities

A restricted activity can schedule tasks within itself. However, special
considerations apply to tasks within restricted activities. Until the time a
restricted activity terminates or is aborted, one and only one task can be
executing within the activity at any one time. A restricted activity can use
only the STS$ executive function to schedule a task; it will be aborted if it
attempts to use the CTC$ or STC$ executive functions. When a restricted
activity calls the STS$ executive function, the action routine does not schedule
the task immediately; instead it queues the task on a separate queue, and the
task is scheduled only when the current task has terminated by calling the TMT$

executive function.

The priority level specified for a task within a restricted activity has a
special significance. First, the priority level at which a task within a
restricted activity can run is limited by the system. If a restricted activity
attempts to schedule a task at a level above the highest allowed priority level,
the system will automatically adjust the level down to the highest allowed
level. The task is not scheduled immediately; instead it is placed on a
separate queue of tasks waiting to be executed within that activity, and
scheduled later when the current task has terminated. The waiting tasks are
queued in priority order. If two or more tasks are requested at the same
priority level, the system schedules them in the order in which the calls on the

STSS executive function were made.

The following rules must be observed for tasks within a restricted
activity:

e The user must bear in mind that any task scheduled will not be
executed until the current task has terminated. If a task schedules
a second task and expects to wait until the second task has run, it
will be very disappointed.

3-6 AR22

At least one task must be current 'y executing up until the time the
activity terminates. The last tassx ..ust therefore terminate with a
Terminate iActivity (TMAS) call, and not with a Terminate Task (TMTS$)
call. If a task terminates with a TMT$ call and there is no c¢ther
task requested for execution with’n the activity, the activity will
be aborted.

D restricted activity cannot schedule a task within another
activity. If the task entry point specified in the STS$ call is
not within the activity area (and within the B-space in a 64K
sy. -m), the activity will be aborted.

A restricted activity cannot call the Return Block (RBL$) executive
function to return a TCB to free memory. Every task of a
restricted activity must, therefore, return its TCB by giving the
TCE address as a parameter of the TMA$ or TMTS$ call.

The rescurces used by a restricted activity - reserved I/0 device,
open files and libraries, connected volumes, and the TCB - are
returned automatically to the system when a restricted activity
terminates or is aborted (with the exception of work areas
explicitly allocated on the disk. However, an activity that is
being checked out as a restricted activity must return these
resources if it is later to be run as a nonrestricted activity.

Tasks within a restricted activity may request only a limited sub-
set of the available executive functions. See Table F-2 in Appendix
F for the list of permissible functions.

3-7 AR22

TCBS

Define Task Control Block (TCBS$)

The TCB$ macro allows the user to access specific words in the TCB with

symbolic names instead of by numeric displacements.

MACRO EXPANSION

The TCBS macro defines by EQU statements the relative position of words in
the TCB which must be accessible by the user.

MACRO CALL FORMAT

Location Operation Operand

TCB$

MACRO EXPANSION DETAILS

The user can access the following relative locations within a TCB by their

symbolic names:

Symbolic Contents of

Name Relative Location)
ZTCBST status

ZTCBEN task entry address
ZTCBP1 parameter 1

ZTCBP2 parameter 2

ZTCBCW TCB control word
ZTCBPT pointer to primary TCB
ZTCBAC ACB address

OUTLINE PARMETER LIST

The outline pamameter list is not applicable to the TCB$ macro.

Example:

The following example shows the definition of specific words within a
task control block by a TCB$ macro call.

3-8 AR22

TCB$

LDA

LDA

2TCBP1,1

ZTCBP2,1

UPON ENTRY TO THE TASK, X-REGISTER

POINTS TO TCB

GET PARAMETER 1 FROM TCB

GET PARAMETER 2 FROM TCB

AR22

STS§

Schedule Task (STSS)

The STSS$ function is used to schedule a task for execution. The task must
be currently resident in main memory.

FUNCTION ACTION

After obtaining a block from free memory the STS$ action routine creates a
TCB for the task. The task is then scheduled by attaching the TCB to the end of
the priority level schedule gqueue, and control is returned to the calling
program.

MACRO CALL FORMAT

Location Operation Operand
[symbol] STSS task entry address,
[level],

[ACB address pointer],
[parameter 1},
[parameter 2],

error return address

symbol - Optional. The symbolic location of the STS$ macro instruc-
tion.

task entry address - The address of the entry point of the task.

level - Optional. The user priority level number on which the task
is to be scheduled. If a level number lower than the lowest
user priority level is specified, the lowest user priority
jevel is used to schedule the task. If the task is within a
restricted activity and the level is higher than the highest
level permitted for restricted activities (user level 3), the
task will be scheduled at the highest level. If this parameter
is omitted, the task is scheduled on the default level speci-
fied in the activity control block of the activity in which the
task resides.

ACB address pointer - Optional. The address of a word containing
the address of the activity control block associated with the
activity in which the task resides and under whose control the
task is to be executed. If this parameter is omitted, the task
is scheduled as part of the current activity. If this parameter
is the address of a word containing zero (i.e., ACB address =
zero), the task is scheduled as part of the current activity.
If the function call is made by a restricted activity, the
action routine assumes that the task being scheduled is part of
the same activity, and this parameter is ignored.

parameter 1 - Optional. A parameter word that can be used by the
caller to send data to the task. The action routine puts this
parameter in word ZTCBPl of the TCB. If this parameter is
omitted, a zero word is generated in the TCB for word ZTCBPl.
If parameter 2 is not zero, parameter 1 must not be zero unless
the free memory block parameter passing technique is being used
(see Appendix G, "Free Memory Block Parameter Passing
Technique") .

3-10 AR22

parameter 2 - Optional. A parameter word that can be used by the
caller to send data to the task. The action routine puts this
parameter in word ZTCBP2 of the TCB. 1If this parameter is
omitted, a zero word is generated in the TCB for word ZTCBP2.
If parameter 1 is zero, parameter 2 must be zero unless the free
memory block parameter passing technique is being used (see
Appendix G, "Free Memory Block Parameter Passing Technique").

error return address - The address to which control is returned if an
error is found during the processing of the STS$ function call.

NORMAL RETURN

" Control is returned to the calling program, at the instruction following

the STS$ function call after the task has been scheduled.

ERROR RETURN

Control is returned to the error return address specified in the STSS
parameter list with the error .code in the A-register when the following error

is detected:

A-Register

Contents
(Octal) Error Condition
34 Requested executive function is not

configured.

ACTION ROUTINE DETAILS

A block is omitted from free memory and used to contain the TCB generated
using the specified STS$ parameters. If the level parameter is omitted, 0S/700
schedules the task on the default level of the activity in which it resides by
using the default level in generating the TCB. The default level is found in
the ACB associated with the activity. If the ACB address pointer parameter is
omitted, the address of .the ACB of the current activity is used in generating
the TCB.

After the TCB is generated, the task is scheduled by placing the TCB at
the end of the priority level schedule queue. If the priority level in the TCB
is lower than the lowest user priority level, the task is scheduled on the
lowest user priority level. The STS$ action routine exits by returning control
to the calling program at the instruction following the STSS$ function call.
When the calling program regains control, the scheduled task may not have been

dispatched.

If the action routine is being called by a restricted activity, the task
is not scheduled immediately; instead it is placed on a separate queue of tasks
waiting to be executed within that activity, and scheduled later when the cur-

rent task has terminated. The waiting tasks are gueued in priority order.

3-11 AR22

OUTLINE PARAMETER LIST

Word

Number Operation Operand
0 DAC task entry address _—
1 DEC [level] —
2 DAC {ACB address pointer]
3 DAC [parameter 1]
4 DAC [parameter 2]
5 DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list. If any of the
optional parameters is omitted, a BSZ 1
statement must replace the respective state-
ment.

Examples:

A task, starting at ATASK in the current activity, is to be scheduled
on level 2. The task requires two parameters: the location T1l, and
the location T2.

STSS ATASK, 2,,T1,T2, TERR DEFAULT ACB
ATASK ——e—e— START OF THE TASK
T1 BSZ 1 PASS ADDRESS TO TASK AS PARAMETER 1

. ~~

T2 BSZ 1 PASS ADDRESS TO TASK AS PARAMETER 2 -
TERR ———— ERROR RETURN
Using the outline parameter list, the above example would be written
as follows:

LDX PLIST SET UP POINTER TO OUTLINE LIST

STS (X)
PLIST DAC *4+1 POINTER TO OUTLINE LIST

DAC ATASK POINTER TO START OF TASK

DEC 2 1.LEVEL PARAMETER

BSZ 1 DEFAULT ACB ADDRESS POINTER N

DAC T1 PARAMETER 1

DAC T2 PARAMETER 2

DAC TERR ERROR RETURN ADDRESS
T1 BéZ 1 PASS ADDRESS TO TASK AS PARAMETER 1
T2 BSZ 1 PASS ADDRESS TO TASK AS PARAMETER 2
TERR HIT ERROR RETURN o~
ATASK ———— START OF THE TASK -

3-12 AR22

SUS$

Suspend Task (SUSS)

The SUS$ function call is used to suspend the task in which it appears and
allows the possible dispatching of a task currently scheduled at another

priority level.

FUNCTION ACTION

The SUS$ action routine saves all hardware registers (except the A-
register) and pseudoregisters, and exits to the executive which dispatches the
highest priority scheduled task other than the task being suspended, and

returns control to the calling program when the suspended task is resumed.

MACRO CALL FORMAT

Location Operation Operand

symbol SUSS
symbol - Optional. The symbolic location of the SUS$ macro instruc—
tion.

This macro instruction has no parameters.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the SUS$ function call when the task is resumed. The suspended task is resumed
with all hardware registers (except the A-register), indexing mode, keys,

pseudoregisters, and banks restored.

As is the case after any executive function call, when control is returned,
the addressing mode is set to extended mode, interrupts are enabled, and the
J-base is set to the activity J-base value. This setting of the return state
may result in a state being changed from what it was when the SUS$ function

call was issued.

ERROR RETURN

There is no error return for this function.

ACTION ROUTINE DETAILS

The state of the suspending task is saved in the priority level suspend
area. All hardware registers (except the A-register) and pseudoregisters are
saved there. The system then determines if any task is currently scheduled at
a priority level higher than the suspending level. If so, the highest priority
task is dispatched. If no tasks are scheduled at a level higher than the

3-13 AR22

suspending level, the highest priority scheduled task under the suspended level

is dispatched. This may result in tasks of lower priority than the suspended

task being dispatched and terminated before the suspended task is resumed.

The suspended task regains control with all hardware registers (except the
A-register), pseudoregisters, indexing mode, keys, and banks restored. The ~—
contents of the A-register are destroyed by the subroutine ZALINK through which
the SUSS$ function call passed; it cannot be restored. Control is returned with
extended addressing mode set, interrupts enabled, and the J-base set to the
J-base value of the activity in which this task resides. This may result in a
mode change from that of when the task was suspended.

While a task is suspended, no other scheduled task on the same level can be
dispatched.

OUTLINE PARAMETER LIST

There is no outline parameter list for this function, which has no param-
eters.

Examples:

A task to be suspended to allow any currently scheduled tasks on dif-

ferent levels to be dispatched.

SuUSss SUSPEND THE TASK

~~
———— RESUME TASK PROCESSING

~~

3-14 AR22

VTS

Terminate Task (TMTS)

The TMTS$ function call is used to terminate the task in which it appears.
If the task being terminated is the last task in an activity, the TMAS$ function

must be used instead of TMTS$, because TMAS terminates the activity as well as

the task.

FUNCTION ACTION

The TMT$ action routine returns the TCB (if present) to free memory,
£erminates the current task and exits to the executive, which dispatches the

highest priority scheduled task.

MACRO CALL FORMAT

Location Operation Operand
[symbol] TMTS [TCB address pointer]

symbol - Optional. The symbolic location of the TMT$ macro instruc-
tion.

TCB address pointer - Optional. The address of a word containing the
address of the task control block associated with the terminating
task. The TCB is returned to free memory. If this parameter is
omitted, no block is returned to free memory.

NORMAL RETURN

The TMT$ action routine exits to the executive, and control does not return

to the calling program.

ERROR RETURN

There is no error return for this function. Contrcl is always returned to

the executive.

ACTION ROUTINE DETAILS

If the TCB address pointer parameter is present, and the TCB address is not
zero, the block is returned to free memory. If the TCB address pointer param-
eter is omitted or if the parameter is present but the TCB address is zero, no

block is returned to free memory.

TMT$ exits to the executive, which dispatches the highest priority
scheduled task. No return is made to the callihg program. Because a task does
not regain control after it terminates, it must replace all allocated system
resources that have not been passed to other tasks in the system. This requires

that before terminating a task, the user must:

3-15 AR22

Make sure all I/O operations initiated by tLie task are completed.
. Release all reserved I/0 devices.

Close all opened files.

Close all opened libraries.

Return all blocks obtained from free memory. P~

o Ul W N

. Disconnect all explicitly connected volumes.

If the activity containing the task is a restricted activity, the action
routine checks that the TCB address (which must be present) is correct, and that
another task within the activity has been requested and is waiting to be
scheduled. If there is no other task, the activity is aborted. If another task
exists, the routine schedules the first task from the queue of waiting tasks,

and exits to the executive dispatcher.

OUTLINE PARAMETER LIST

Word
Number Operation Operand
0 DAC [TCB address pointer]

The parameter in the outline parameter list
is the same as that described above for the
inline parameter list. If the TCB address

pointer is omitted, a BSZ 1 statement must

replace the respective DAC statement.

7

Examples:
A task is to be terminated. Its TCB has been returned to free memory
prior to termination.
TMTS TERMINATE THE TASK
In the following example, a task is to be terminated; its
TCB address is stored in word TCBA, and this TCB is re-
turned to free memory.
TMT$ TCBA TERMINATE THE TASK
TCBA BSZ 1 USED TO STORE THE TCB ADDRESS
Using an outline parameter list, the above example would be written
as follows:
LDX PLIST SET UP POINTER TO OUTLINE LIST -
TMT$ (x) TERMINATE THE TASK
PLIST DAC *+1 POINTER TO OUTLINE LIST
DAC TCBA POINTER TO TCB ADDRESS
TCBA BéZ 1 TCB ADDRESS STORAGE o~

3-16 AR22

CTC$

Create a Task Control Block (CTCS)

The CTC$ function is used to create a TCB without scheduling the task.
The created TCB can be scheduled later using the STC$ function.
FUNCTION ACTION

The CTCS$ action routine creates a TCB for the task after obtaining a block
from free memory. It then places the address of the created TCB in the X-

register, and returns to the calling program without scheduling the task.

A restricted activity cannot call the CTC$ function. If it attempts to do
so, the activity will be aborted.

MACRO CALL FORMAT

Location Operation Operand
[symbol] CTCS task entry address,
[levell,

[ACB address pointer],
[parameter 1]},
[parameter 2],

error return address

symbol - Optional. The symbolic location of the CTC$ macro instruc-
tion.

task entry address - The address of the entry point of the task.

level - Optional. The user priority level number (1 through n) on
which the task is to be scheduled later. If a level number
lower than the lowest user priority level is specified, the
lowest user priority level is used when the TCB is scheduled.
If this parameter is omitted, the TCB is generated using the
default level specified in the ACB of the activity in which
the task resides.

ACB address pointer - Optional. The address of a word containing
the address of the activity control block associated with the
activity in which this task resides and under whose control the
task is to be executed. If this parameter is omitted, the
action routine puts into the TCB the ACB address of the activity
making the function call or is the address of a word containing
zero (i.e., ACB address = zero) the TCB is generated with the
task as part of the current activity.

parameter 1 - Optional. A parameter word that can be used by the
calling program to pass data to the task. The action routine
puts this parameter in word ZTCBPl of the TCB. If this parameter
is omitted, a zero word is generated in the TCB for word ZTCBP1.
If parameter 2 is not zero, parameter 1 must not be zero unless
the free memory block parameter passing technique is being used
(see Appendix G, "Free Memory Block Parameter Passing
Technique") .

3-17 AR22

parameter 2 - Optional. A parameter word that can be used by the
calling program to pass data to the task. The action routine
puts this parameter in word 2TCBP2 of the TCB. If this parameter
is omitted, a zero word is generated in the TCB for word ZTCBPZ2.
1f parameter 1 is zero, parameter 2 must be zero unless the free
memory block parameter passing technique is being used (see
Appendix G, "Free Memory Block Parameter Passing Technique") .

error return address - The address to which control is returned if an
error is found during the processing of the cTCS$ function call.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the CTCS function call after the TCB has been created. On return, the address

of the created TCB is in the X-register.

ERROR RETURN

Control is returned to the error return address specified in the CTCS
parameter list with the error code in the A-register when any of the following

errors is detected:

A-Register

Contents
(Octal) Error Condition
34 Requested executive function is not
configured.
35 Requested executive function is disk-

resident and there was a disk error
during an attempt to load the func-
tion into main memory.

ACTION ROUTINE DETAILS

A block is obtained from free memory and is used to contain the TCB
generated using the specified CTC$ parameters. If the level parameter is
omitted, the task is scheduled on the default level of the activity in which it
resides by using the default level in generating the TCB. The default level is
found in the ACB associated with the activity. If the level is specified as
lower than the lowest user priority level, the lowest user priority level is
used when the TCB is scheduled. If the ACB address pointer parameter is
omitted, the address of the ACB of the current activity is used in generating

the TCB.

CTCS$ exits by returning control to the calling program at the instruction
following the CTC$ function call with the address of the created TCB in the

X-register.

3-18 AR22

OUTLINE PARAMETER LIST

Examples:
A TCB for a

using the STCS function call.

Word
Number Operation Operand
0 DAC task entry address
1 DEC [level]
2 DAC [ACB address pointer]
3 DAC [parameter 1]
4 DAC [parameter 2}
5 DAC error return address

Parameters in the outline parameter list are
the same as those described above for the

inline parameter

list. If any of the

optional parameters are omitted, a BSZ 1
statement must replace the respective state-

ment.

task, ATASK, is to be created. This task resides in the
current activity and is to be scheduled later on priority level 2;

The two parameters required by the

task are to be provided prior to its scheduling. The address of the
TCB is stored in word Tl1.

CTCS
STX

LDX
STA
LDA
STA

ATASK ==e-

T1 BSZ

TERR HLT
*

ATASK,2,,0,0,TERR CREATE TCB

Tl

T1
ZTCBP1,1
PARAM
ZTCBP2,1

SAVE TCB ADDRESS

STORE PARAMETER 1 IN TCB

STORE PARAMETER 2 IN TCB

START OF TASK

STORAGE FOR TCB ADDRESS
ERROR RETURN

Using an outline parameter list, the above example would be written

as follows:
LDX
CTCS

LDX
STA
LDA

PLIST
(x)

T1
ZTCBP1,1
PARAM

SET UP POINTER TO OUTLINE LIST

STORE FIRST PARAMETER

AR22

PLIST

ATASK

T1

TERR

STA

DAC
DAC
DEC
BSZ
BSZ
BSZ
DAC

2TCBP2,1

*+1
ATASK
2

1

1

1
TERR

STORE SECOND PARAMETER

POINTER TO OUTLINE LIST

ERROR RETURN ADDRESS

START OF TASK

TCB ADDRESS

ERROR RETURN

AR22

STC®

Schedule Task Control Block (STCS)

The STCS function is used to schedule a task that is currently resident in
main memory by using a previously defined TCB. The TCB may have been created

by a previous CTC$ function call.

FUNCTION ACTION

The STCS action routine schedules the task by attaching the TCB to the end

of the priority level schedule queue and returns to the calling program.

A restricted activity cannot call the STC$ function. If it attempts to do
so, the activity will be aborted.

MACRO CALIL FORMAT

Location Operation Operand
[symbol] STCS TCB address pointer,

error return address
symbol - Optional. The symbolic location of the STC$ macro instruc-
tion.

TCB address pointer - The address of a word containing the address of
a previocusly generated task control block associated with the
task to be scheduled.

error return address - The address to which control is returned if an
error is found during the processing of the STCS$ function call.
NORMAL RETURN

After the task has been scheduled, control is returned to the calling
program, at the instruction following the STCS$ function call.

ERROR RETURN

Currently, the error return is not applicable.

ACTION ROUTINE DETAILS

The task is scheduled by placing the TCB at the bottom of the\priority
level schedule queue. If the priority level in the TCB is lower than the
lowest user-priority level, the task is scheduled on the lowest user-priority
level. STC$ exits by returning control to the calling program at the instruc-
tion following the STC$ function call. When the calling program regains

control, the scheduled task may not have been dispatched.

3-21 AR22

OUTLINE PARAMETER LIST

Word

Number Operation Operand
DAC TCB error pointer
DAC error return address

Parameters in the outline parameter list
are the same as those described above for
the inline parameter list.

Examples:

A task is to be scheduled. Its TCB has been created previously by a
CTC$ function call. The address of the TCB has been stored in TCBA.

STCS TCBA, TERR SCHEDULE TASK
TCBA BSZ 1 ADDRESS OF TCB STORED
*
TERR HLT ERROR RETURN, CURRENTLY NOT USED

Using an outline parameter list, the above example would be written
as follows:

LDX PLIST SET UP POINTER TO OUTLINE LIST
STC$ (x)
PLIST DAC *+1 POINTER TO OUTLINE LIST
DAC TCBA
DAC TERR ERROR RETURN ADDRESS
TCBA BSZ 1 ADDRESS OF TCB STORED
TERR HLT ERROR RETURN, CURRENTLY NOT USED

3-22 AR22

Connect Clock Task (CCL$)

The CCLS$ function is used to connect a clock task to a system timer.

FUNCTION ACTION

CCLS

‘'The CCL$ action routine generates a clock TCB and places it in the proper

timer queue. Then the CCLS action routine returns control to the calling pro-

gram through the normal return.

A restricted activity cannot call the CCL$ function. If it attempts

so, the activity will be abortgd.

MACRO CALL FORMAT

Location Operation Operand
[symbol] CCLS$ task entry address,
[level],

[number of time units],

time unit type,

[connect typel,

[parameter 11,

[parameter 2],

error return address

symbol - Optional. The symbolic location of the CCL$ macro instruc-

tion.

task entry address - The address of the entry point of the task.

level - Optional. The user priority level number
is to be scheduled. If a level number lower
user priority level is specified, the lowest
level is used to schedule the task. If this

on which the task
than the lowest
user priority
parameter is

omitted, the task is scheduled on the default level specified

in the ACB of the activity in which the task

resides.

number of time units - Optional. An integer expressing the number
of time units from now until the task is to be scheduled.

If this parameter is omitted, zero is used.

The range of this

parameter depends on the time unit type parameter.

time unit type - An integer specifying the time unit for the number

of time units parameter:

0 = Absolute time of day in minutes from midnight.

1 = millisecond. The range of number of time units is 0

through 1023.

2 = half-second. The range number of time units is 0 through

4095.

4 = second. The range of number of time units is 0 through

4095.

8 = minute. The range of number of time units is 0 through

4095.

3-23

to do

AR22

If this parameter is omitted, the user return is taken with the
value 1 in the A-register.

connect type - Optional. An integer specifying whether the task is
to be scheduled on a cyclic or noncyclic basis.

0
1

If this parameter is omitted, zero (cyclic) is used.

cyclic

noncyclic

parameter 1 - Optional. A parameter word that can be used by the
caller to pass data to the task. The action routine puts this
parameter in word ZTCBPl of the TCB. If this parameter is
omitted, a zero word is generated in the TCB for word ZTCBP1l.
If parameter 2 is nonzero, parameter 1 must not be zero unless
the free memory block parameter passing technique is being used
(see Appendix G, "Free Memory Block Parameter Passing
Technique").

parameter 2 - Optional. A parameter word that can be used by the
caller to pass data to the task. The action routine puts this
parameter in word ZTCBP2 of the TCB. 1If this parameter is
omitted, a zero word is generated in the TCB for word ZTCBP2.
If parameter 1 is zero parameter 2 must be zero unless the free
memory block parameter passing technique is being used (see
Appendix G, "Free Memory Block Parameter Passing Technique").

error return address - The address to which control is returned if an
error is found during the processingof the CCL$ function call.

NORMAL RETURN

Upon normal return, the clock task is connected to the proper clock timer
queue. Also Upon normal return, the X-register contains the address of the
clock TCB used to connect the task to the clock. This address must be saved if

a subsequent DCL$ function call is to be issued.

ERROR RETURN

Control is returned to the error return address specified in the CCLS$
parameter list with the error code in the A-register when any of the following

errors is detected:

A-Register

Contents
(Octal) Error Condition
1 Timer not configured.
34 Requested executive function not
configured.
35 Requested executive function is disk-

resident and there was a disk error
during an attempt to load the func-
tion into main memory.

ACTION ROUTINE DETAILS

A clock TCB, which defines the clock task, is generated. This TCB is

placed in the proper timer queue. Return is then made to the normal return.

3-24 AR22

When the specified time interval has elapsed, the clock task is scheduled
and dispatched. If the task is to be cyclic, its TCB remains on the timer
queue until removed by a DCL$ function call. If the task is not cyclic, its

TCB is removed from the timer queue when the task is scheduled.

OUTLINE PARAMETER LIST

Word
Number Operation Operand
0 DAC task entry address
1 DEC [level]
2 DEC [number of time units]
3 DEC {time unit typel
4 DEC [connect type]
5 DAC [parameter 1]
6 DAC [parameter 2]
7 DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list. If any of the
optional parameters are omitted, a BSZ 1
statement must replace the respective state-
ment.

Examples:

The example below illustrates the use of the CCL$ function to connect
a task to the clock for cyclic execution. The task CGOLT is to be
connected to the clock for scheduling at 20-second intervals. The
task is scheduled on user priority level 4.

CONNECT TASK CGOLT TO THE CLOCK FOR

* CYCLIC EXECUTIONS
CCL$ CGOLT, 4,20,4,0,,, ERRT
STX ATCB SAVE TCB ADDRESS
*
ATCB BSZ 1
ERRT ——e

Using an outline parameter list, the above example would be written
as follows:

3-25 AR22

ATCB
CLST

ERRT

LDX
CCL$
STX

BSZ
DAC
DaC
DEC
DEC
DEC
DEC
BSZ
BSZ
DAC

CLST
(X)
ATCB

*41

CGOLT

20

ERRT

CONNECT TASK “CGOLT" TO THE CLOCK FOR

CYCLIC EXECUTION
GET LIST ADDRESS

SAVE TCB ADDRESS

ADDRESS OF OUTLINE LIST
ADDRESS OF TASK ENTRY
PRIORITY LEVEL = 4

20 UNITS OF TIME

UNITS = SECONDS

CYCLIC CLOCK TASK

USER PARAMETER 1

USER PARAMERER 2

ERROR RETURN ADDRESS

ABSOLUTE TIMER NOT CONFIGURED

AR22

DCLS

Disconnect Clock Task (DCLS)

The DCL$ function is used to disconnect a specified clock task from a

system timer.

FUNCTION ACTION

The DCL$ action routine removes the clock task TCB from the timer queue on
which it resides, thus disconnecting the task. It then returns all associated

blocks to free memory and returns control to the calling program.

A restricted activity cannot call the DCL$ function. If it attempts to do
SO0, the activity will be aborted.

MACRO CALL FORMAT

Location Operation Operand
[symbol] DCLS$ TCB address pointer,

error return address
symbol - Optional. The symbolic location of the DCLS$ macro instruc-
tion.

TCB address pointer - The address of a word in which the address of
the clock TCB has been stored. This TCB address has been
returned to the caller in the X-register by the CCL$ function.

error return address - The address to which control is transferred
if an error is discovered during the processing of the DCL$
function call.

NORMAL RETURN

Upon normal return, the clock task is disconnected from the clock.

ERROR RETURN

Control is returned to the error return address specified in the DCL$
parameter list when any of the following errors is detected:

A-Register

Contents
(Octal) Error Condition

34 Requested executive function is not
configured.

35 Requested executive function is disk-
resident and there was a disk error
during an attempt to load the func-
tion into main memory.

Not Significant The specified clock TCB was not found

in the timer gqueue. (There is no
specific error code associated with
this error condition.)

3-27 AR22

ACTION ROUTINE DETAILS

The clock task TCB is removed from the timer queue. If, in a search of

the timer queue, the given TCB cannot be found on the gqueue, the error return

is taken. After the TCB is removed, all associated blocks are returned to free

memory. Return is to the normal return.

OUTLINE PARAMETER LIST

Examples:

Word
Number Operation Operand
0 DAC TCB address pointer

DAC error return address

Parameters in the outline parameter list
are the same as those described above for
the inline parameter list.

The example below illustrates the use of the DCL$ function to discon-
nect a clock TCB from the clock queue. The address of the TCB to be
disconnected was stored in word ATCB after the clock task was
originally connected by CCL$ function.

DCL$

ATCB BSZ
*

ERRC ———

DISCONNECT A CLOCK TCB FROM CLOCK

ATCB, ERRC ’

CLOCK TCB ADDRESS

1 TO HOLD TCB ADDRESS

ERROR RETURN

Using an outline parameter list, the above example would be written

as follows:

LDX
DCLS$

PLIST DAC
DAC
DAC

ATCB BSZ

ERRC ———

PLIST SET UP POINTER TO OUTLINE LIST

(X) DISCONNECT CLOCK TCB

*+1 POINTER TO OUTLINE LIST

ATCB POINTER TO TCB ADDRESS

ERRC ERROR RETURN ADDRESS)
1 TCB ADDRESS, SAVED AFTER CCL$ CALL

ERROR RETURN

3-28 AR22

SECTION IV
SCHEDULING ACTIVITIES

The following system functions are used to initiate and terminate activi-

ties.

ACTIVITY FUNCTIONS

The five activity functions — Schedule Activity (SAC$), Terminate Activity
(TMAS), Abort Activity (ABTS), Connect Clock Activity (CCA$), and Disconnect
Clock Activity (DCAS) — are used: ’

To schedule activities at any point in a task,
To indicate that an activity is to be terminated,

To abort a restricted activity,

To schedule a clock activity to be executed after a specified delay
or at regular intervals (cyclically),

e To discontinue execution of a cyclic clock activity.

An activity comprises a collection of instructions and data that form one
or more tasks. The entire activity resides in one contiguous main memory area,
called the activity area, when it is executed. If disk-resident, an activity is
brought into main as one complete logical entity memory from disk. The lead

task is scheduled when the activity is requested.

Activities can be nonreusable, reusable, or reentrant. An activity is
nonreusable if it must be reloaded prior to each execution. A reusable activity
1s one that must be reinitialized (by internal code) prior to each execution.

It does not need to be reloaded unless it has been overwritten by ancther
activity. A reusable activity must run to completion before being executed

again.

A reentrant activity can be interrupted and executed {at a higher priority
level) with a different set of input parameters without destroying‘the former
state. Later, execution can be continued in the former state as though the
activity had not been interrupted. The variakle data areas required for a

reentrant activity are obtained from free memory.
An activity must remian in main memory until its execution is completed;

all I/O operations must be finished; all clock tasks must be terminated (if

noncyclic) or discennected (if cyclic); all blocks obtained from free memory

4-1 AR22

must be returned unless they are being passed tc another activity. All activi-
ties should terminate through Terminate Activity (TMAS) function call, although
restricted activities can be terminated by an ABTS$ function call from non-

restricted activity, or from the system executive.

An activity is defined when it is loaded. This is accomplished by the

utility function Load Activity or the system command SLA (see 0S/700 Operators

Guide). Permanent and Temporary main memory-resident activities are defined
when the system is configured. At this time, the activity is placed on the

disk and an entry for it is made in the disk activity directory. This directory
contains information concerning the activity, including the name and the default

priority level.

The name of an activity can be from one through six alphanumeric charac-
ters, the first of which must be alphabetic. This name is used to identify an
activity when it is scheduled (see the description of the SACS function). The
default priority level, specified in-the activity control block (ACB), is the
level at which the lead task of the activity will be scheduled if the level
parameter in the SACS$ function call is omitted. The STS$ action routine uses

this default level when scheduling tasks in this activity.

Reentrant Activities

A reentrant activity is one which may be interrupted and executed again on
behalf of a different set of input parameters without destroying the interrupted
state. The interrupted activity may then be resumed as though no interruption

had taken place.

The executive saves the state of the executing task when the activity is
interrupted and restores this state when the task is resumed. The state which
is preserved and restored includes:

The hardware registers: A, B, X, S, Y, banks and keys register.

Three pseudoregisters: ZCR1l, ZCR2, ZCR3.

The three pseudoregisters are provided by the executive and may be refer-
enced from an activity indirectly through pointer words (see the TMAS$ function

examples for illustrations of this technique).

To make a set of task code reentrant, the user must obtain a block of free
memory for a variable data area, and store the address of this block in one of

the hardware registers or pseudoregisters.

4-2 AR22

Activity Interaction

Activity interaction may occur in two ways: scheduling and monitoring.
Using the SAC$ executive function, an activity can schedule a second activity
and allow it to execute to completion by itself; or an activity can cause a
second activity to be brought into main memory and subsequently control
(monitor) the executive of the second activity. To allow monitoring to take
place, after reading the second activity into memory the executive must pass
control to the monitoring activity instead of starting execution of the second
activity. To cause this to happen, the monitoring activity uses the secondary
TCB parameter of the SACS$ function call. This secondary TCB action is supported

only in DOS.

The secondary TCB defines a secondary task within the monitoring activity.
When the second activity is brought into main memory, this secondary task is

scheduled in place of the lead .task of the second activity.

When the secondary task is dispatched, the monitoring activity has control
with the second activity being main-memory-resident, and monitoring may take
place. When the secondary task is dispatched, the X-register contains the
address of the secondary TCB. The address of the second activity's primary
(lead task) TCB is in the word whose displacement in ZTCBPT with respect to the
beginning of the secondary TCB. It is the responsibility of the monitoring
activity to ensure that the second activity is terminated. This may be
accomplished in either of two ways:

® Schedule the lead task of the second activity and allow the second
activity to execute to completion and terminate itself.

e Terminate the second activity from within the monitoring activity
(DOS only).

The latter method of terminating the second activity involves use of spe-
cial capabilities of the TMAS$ function. One of the parameters of the TMAS
function call defines a TCB which is to be returned to free memory upon termina-
tion of the activity. The monitoring activity, wishing to terminate the second
activity, can issue a TMAS function call, with the TCB of the lead task of the
second activity as a parameter. The TMAS$ action routine terminates the second
activity, but returns control to the monitoring activity, rather than to the
executive.

NOTE: Regardless of the method used to terminate the second

activity, the monitoring activity must terminate itself.
In addition, the monitoring and the second activities must

be main-memory-resident at the same time; therefore, they
must occupy different nonoverlapping activity areas.

4-3 AR22

Scheduling a Restricted Activity With a Secondary TCE

When a nonrestricted activity schedules a restricted activity with a
secondary TCB, the following rules must be observed:

e The secondary TCB must not start up a task within a restricted
activity.

e Only the primary TCB may be used to schedule execution of the
restricted activity.

e The monitoring activity must not start up more than one task within
the restricted activity.

Clock Activities

The two-clock activity functions are used to schedule activities by means
of the clock, and to stop such scheduling. The functions are: Connect Clock
Activity (CCA$) and Disconnect Clock Activity (DCLS) .

Clock activities can be scheduled to be executed once after a specified
delay (noncyclic), or repeatedly at regular intervals (cyclic). A cyclic
activity must be disconnected when no further executions of the activity are

required; a noncyclic activity does not have to be disconnected.

Care must be taken to ensure that a clock activity is not scheduled
cyclically at too short an interval. Otherwise, if the activity is scheduled a
second time before it has finished executing the first time, scheduling requests
may mount up until the system runs short of free memor& blocks. The user must
ensure that the necessary activity area is free for a clock activity to run. If
it is not, the activity will still be scheduled at the specified intervals, and

eventually the system could run out of free memory.

4-4 AR22

SAC$

Schedule Activity (SACS)

A request for the execution of an activity is made through the SACS$ func-

tion.

FUNCTION ACTION

The SAC$ action routine creates a TCB for the activity lead task after
obtaining a block from free memory. If immediate scheduling was requested, the
activity is dispatched at once or the error return is taken. Otherwise, SACS
then places the request to schedule the activity in the activity request queue
and returns control to the calling program. Later, when the activity's memory
area becomes available, the activity supervisor brings the activity into main
memory and schedules the lead task of the activity (or in a DOS, the task
defined by the secondary TCB).

If a restricted activity attempts to schedule a nonrestricted activity or
to schedule another activity with a secondary TCB, an error status will be

returned.

MACRO CALL FORMAT

Location Operation Operand
[symbol] SACS activity name block address, [levell, é SR

[parameter 1],
[parameter 2],

error return address,
[secondary TCB address],

[schedule immediate]

symbol - Optional. The symbolic location of the SAC$ macro instruc-
tion.

activity name block address - The address of the first word of the
6-character name of the activity. The name is left-justified,
right-filled with spaces.

level - Optional. The user priority level number at which the lead
task of the activity is to be scheduled. If a level number
lower than the lowest user-priority level is specified, the
lowest user-priroity level will be used to schedule the task.
If this parameter is omitted, the task is scheduled on the
default level specified in the ACB of the activity at activity
load time.

parameter 1 - Optional. A parameter word that can be used by the
calling program to pass data to the lead task. The action
routine puts this parameter in word ZTCBPl of the lead task
TCB. If this parameter is omitted, word ZTCBPl of the TCB is
set to zero. Note that if parameter 2 is not zero, parameter
1 must not be zero unless the free memory block parameter
passing technique is used (see Appendix G, "Free Memory Block
Parameter Passing Technique").

4-5 AR22

parameter 2 - Optional. A parameter word that cia ke used by the
calling program to pass data to the lead task. The action
routine puts this parameter in word ZTCBP2 of the lead task
TCB. 1If this parameter is omitted, word ZTCBP2 of the TCB is
set to zero. Note that if parameter 1 is zero, parameter 2
must be zero unless the free memory block parameter passing
technique is being used (see Appendix G, "Free Memory Block
Parameter Passing Technique").

error return address - The address to which control is returned if
an error is found during the processing of the SACS function
call.

secondary TCB address - Optional. Specifies the TCB to be scheduled.
If this parameter is present, it specifies the address of a
secondary TCB (defining a secondary task) which will be dis-
'patched in place of the lead task of the activity (supported
only in DOS). 1If this parameter is omitted, the lead task of
the activity will be dispatched.

schedule immediate - Optional. A number that indicates whether the
request to schedule an activity is to be gueued if the activity
area in which the scheduled activity resides is occupied by
another activity.

1f the schedule immediate parameter is a 1 in the SACS parameter
list and the secondary TCB address is also specified in the SACS
parameter list, the request to schedule the activity is not
queued. Therefore, if the activity area in which the scheduled
activity resides is occupied by another activity, the error
return is taken to the calling program.

If the schedule immediate parameter is zero or omitted in the
SACS parameter list, or if the secondary TCB address is not
specified in the SAC$ parameter list, the request to schedule

an activity is queued if the activity area in which the scheduled
activity is to reside is occupied by another activity.

NORMAL RETURN

Upon normal return, the request for the activity has been gueued. The lead
(or secondary) task may already have been scheduled if the activity is reentrant
or reusable. If not already scheduled, the lead (or secondary) task will be

scheduled at a later time.

ERROR RETURN

Control is returned to the error return address specified in the SACS
parameter list with the error code in the A-register when any of the following

errors is detected:

A-Register

Contents
(Octal) Error Condition

16 Activity not on disk.

26 No activity area for the activity (starting address
given in the disk directory is not equal to the
starting address of any activity area), or thg
activity is too large for the allocated activity
area.

33 The schedule immediate parameter in the SAC$ param-

eter list is set, the secondary TCB address is
specified in the SAC$ parameter list, and the
activity area where the scheduled activity is to
reside is occupied by another activity.

4-6 AR22

A-Register

Contents
(Octal) Error Condition

34 Requested executive function is not configured.

35 Requested executive function is disk-resident and
there was a disk error during an attempt to load
the function into main memory.

67 I/0 error on activity directory segment during

(See Note) input.
71 I/0 error on activity descriptor directory segment
(See Note) during input.

107 Restricted activity specified a secondary TCB when
scheduling another activity.

170 Restricted activity attempted to schedule a non-
restricted activity.

171 The requested activity is restricted and cannot be
scheduled because free memory is low.

172 The requested activity is being aborted.

NOTE: 1If the A-register indicates an I/O error, the X-register
contains the following additional information:

o If bits 6 and 7 of the A-register contain the value
0l.,, the X-register contains the setup error code

from the I/0 request. (See Appendix A for error
codes returned from the INP$ and OTP$ function
calls.)

e If bits 6 and 7 of the A-register contain the value
10,, the X-register contains the software status
from the I/0 status block.

e If bits 6 and 7 of the A-register contain the wvalue
11, the X-register contains the hardware status
from the I/O status block. Refer to Appendix B for
software and hardware status information.

Because an activity can be loaded after the SAC$ macro call has been pro-
cessed, a load error cannot be returned to the error return address specified in
the parameter list. .When a load error occurs under this condition, an error

message is sent to the operator:

Operator Message Error Condition
SE= 100030 000000 actnam Activity area will be overrun.
SE= 100031 000000 actnam Disk error while loading the
activity.

actnam -~ The name of the activity being loaded.

ACTION ROUTINE DETAILS

If the specified activity is not already resident in main memory (COS only)
or on the disk (defined; DOS only), the error return is taken. The error return
is also taken when the activity is defined to 0S/700, the schedule immediate
parameter and the secondary TCB address are specified in the SACS$ parameter
list, and the activity area in which the scheduled activity is to reside is

occupied by another activity.

4-7 AR22

If the activity is defined to 0S/700, the reques: for execution of the

activity is queued, if necessary, and the normal return is taken.

Later, when the area for the activity becomes available, the activity is
brought into main memory from the disk and the lead task is scheduled. If, in

a DOS system, the secondary TCB has been specified, the secondary task is
scheduled.

OUTLINE PARAMETER LIST

Word
Number Operation Operand
0 DAC activity name address
1 DEC [level]
2 DAC [parameter 1]
3 DAC [parameter 2]
4 DAC error return address
5 DAC [secondary TCB address]

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list. If any of the optional
parameters are omitted, a BSZ 1 statement must
replace the respective statement.

NOTE: The outline parameter list does not include the schedule
immediate parameter. To use this parameter as described
above, the sign bit of word 1 must be set as follows:

Word .
Number Operation Operand
1 oCT 1000xx (where xx is the level)

When the lead task or the secondary task is dispatched, the location of the
lead or secondary TCB will be in the X-register. The words which are of

interest to the user are:

ZTCBST - Status word.
ZTCBP1 - Parameter 1.
ZTCBP2 - Parameter 2.
2TCBPT - Pointer to lead task TCB if secondary task has been dis-

patched.
The above symbols, defined by a TCBS macro call, have addresses which are rela-
tive to word 0 of the TCB. Thus, for example, if upon start of the lead task
parameter 2 must be examined by the user, the coding would be:)

LDA ZTCBP2,1 - The index register points to the start of the TCB.

4-8 AR22

TCB.

The status word appears in either a lead task TCB or the secondary task

It has the following meaning:

Bits 1 and 2 - Task designation (binary)
00 - Reserved.
01 - TCB is for lead task.
10 - TCB is for secondary task.
11 - Reserved.
Bits 3 through 16 - Status (decimal)
0 - No errors.

2 - Activity area overrun error while loading the
activity.

3 - Disk read error while loading the activity.

Status number 2 and 3 are errors returned to the secondary task only
if the secondary task is not part of the same activity as the lead
task.

The user is responsible for generating a secondary TCB. The Create TCB

function (CTCS$) can be used to do this.

Examples:

In the following example the activity ACTIV3 is scheduled immediately.
ACTIV3 is to run at priority level 5 and requires the passing of one
parameter. As no secondary TCB is provided, the lead task of ACTIV3
will be executed.

SAC$ ACTNAM,5,'302,,ERR1l,,1 SCHEDULE ACTIVITY

ACTNAM BCI 3,ACTIV3 ACTIVITY NAME BLOCK

*

ERR1 —— ERROR RETURN

Using an outline parameter list, the above example would be coded as
follows:

4-9 AR22

PLIST

ACTNAM

ERR1

NOTE:

LDX
SACS
DAC
DAC
OCT
ocT
BSZ

DAC

BSZ

BCI

PLIST

(x)

*+1
ACTNAM
100005
302

1

ERR1

3,ACTIV3

SET UP POINTER TO OUTLINE LIST

SCHEDULE THE ACTIVITY

POINTER TO OUTLINE LIST

ACTIVITY NAME BLOCK ADDRESS

PRIORITY LEVEL 5 - SCHEDULE IMMEDIATELY
PARAMETER 1

DEFAULT

ERROR RETURN ADDRESS

NO SECONDARY TCB

ACTIVITY NAME BLOCK

ERROR RETURN

The activity scheduling parameter is not a self-standing
parameter in the outline parameter list form, but is the
sign bit of the level parameter.

AR22

TMAS

Terminate Activity (TMAS)

The TMAS function call is used to terminate either the activity in which it
appears or another activity. Termination of an activity by another activity is

supported only in DOS. A restricted activity can terminate only itself.

FUNCTION ACTION

The TMAS$ action routine returns the TCB to free memory, if the TCB is to be
released. TMAS$ then terminates the activity and returns control to the calling
program or exits to the executive, which dispatches the highest priority
scheduled task.

MACRO CALL FORMAT

Location Operation Operand
[symbol] TMAS [TCB address pointer],

error return address
symbol - Optional. The symbolic location of the TMAS$ macro instruc-
tion.

TCB address pointer - Optional. The address of a word containing the
address of the task control block associated with the activity
to be terminated. The activity associated with the activity
control block pointed to by the task control block is terminated.
If this parameter is omitted, the current activity will terminate
itself and the TCB is not returned.

error return address - The address to which control is returned if an
error is detected during the processing of the TMAS function
call.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the TMA$ function call, if an activity is terminated another activity (DOS
only). If an activity is terminating itself, the TMAS$ function exits to the

executive, and control does not return to the calling program.

ERROR RETURN

When any of the following errors is detected, control is returned to the
error return address specified in the TMAS$ parameter list with the error code in

the A-register.

4-11 AR22

A-Register

Contents
(Octal) Error Condition

34 Requested executive function is not
configured.

35 Requested executive function is
disk-resident and there was a disk
error during an attempt to load the
function into main memory.

174 The activity whose termination is

requested is not running.

ACTION ROUTINE DETAILS

If the TCB address pointer parameter is present, the TCB is examined to
determine if its block is to be returned to free memory. If so, the block is
released. If the TCB address pointer parameter is omitted or if the parameter
is the address of a word which‘contains zero, no block is returned to free

memory.

The activity associated with the ACB pointed to by the TCB specified in
the TMAS parameter list is the activity to be terminated. If the parameter is
omitted, the current activity is terminated. This termination may result in the
lead task or secondary task being scheduled if the activity is reusable or non-
reusable and requests are queued. If no requests are queued for the terminating
activity or if this request is the last of the dispatched requests for a re-
entrant activity, the activity area occupied by the activity is freed for use
by other activities that are queued for the same activity area. If no requests
are queued for the same activity area, that area of main memory is freed for use

by any overlapping activity area that has queued requests.

TMAS$ then determines if it was called by an activity terminating itself or
by an activity terminating another activity. If the calling activity terminates
itself, TMAS$ exits to the dispatcher and does not return to the calling
activity. If the calling activity terminates another activity (DOS only), TMAS
returns to the calling program at the instruction following the TMAS function
call.

NOTE: Before using the TMAS function to terminate an activity, the

user must perform the following:

1. Make sure all I/0O operations initiated by the activity
are complete.

2. Release all I/0 devices reserved by the activity.
3. Close all files opened by the activity.
4. Close all libraries opened by the activity.

5. Return all blocks obtained from free memory by the
activity.

6. Disconnect all clock tasks that reside in the activity.

7. Make sure all tasks in the activity have terminated.

8. Disconnect all volumes explicitly connected by the
activity.

4-12 AR22

If the activity was a restricted activity, these items (except for items 5,
6 and 7, which are not applicable) will be performed automatically by the

system.

OUTLINE PARAMETER LIST

Word

Number Operation Operand
DAC [TCB address pointer]
DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list. If the TCB address
pointer is omitted, a BSZ 1 statement must
replace the respective statement.

Examples:

In the following example, the activity is terminated using a nonre-
entrant inline parameter list.

START STX PTTCB SAVE THE TCB ADDRESS
T;A$ PTTCB, ERA TERMINATE ACTIVITY

ERA H;T ERROR HALT

PTTCB D;C *x TCB ADDRESS

In the following example, the activity is terminated using an inline
parameter list but is reentrant because the parameter is in a pseudo-

register.

START STX*

AZCR1

SAVE LEAD TASK TCB ADDRESS

GBLS 8, , ,GBLERR GET BLOCK FOR PARAMETER LISTS
STX* AZCR2 SAVE BLOCK ADDRESS
GBLERR —--- ERROR ON BLOCK FETCH
LDX* AZCR2 SET UP OUTLINE PARAMETER LIST
LDA ASTRT2 ESTABLISH 2ND TASK'S START ADDRESS
STA 0,1
CRA
STA 1,1 DEFAULT TO SAME LEVEL AS THIS ACTIVITY
STA 2,1 DEFAULT TO RUN UNDER THIS ACTIVITY
LDA* AZCR2 SAVE BLOCK ADDRESS

4-13 AR22

AERRX
ERRX

ERRY

*

*

ASTRT2
STRTZ2

STA 3,1

LDA* AZCR3 SAVE THE VARIABLE BLOCK WHICH WAS FOUND

STA 4,1 PREVIOUSLY

LDA AERRX ESTABLISH ERROR RETURN ADDRESS

STA 5,0 —
CTCS$ (X) CREATE 2ND TASK'S TCB —
STX* AZCR3 SAVE 2ND TASK'S TCB ADDRESS

STCS ZCR3, ERRY SCHEDULE THE 2ND TASK

DAC ERRX

—_——— ERROR ON TCB CREATION

- ERROR ON SCHEDULING 2ND TASK

TMT$ ZCR1 TERMINATE THE LEAD TASK

2ND TASK --- SCHEDULED BY LEAD TASK

DAC STRT2

STX* AZCRL SAVE 2ND TASK'S TCB ADDRESS

LDA 3,1

STA* AZCR2 PRESERVE TCB ADDRESS

LDA 4,1 o~
STA* AZCR3 PRESERVE VARIABLE BLOCK ADDRESS

RETURN VARIABLE PARAMETER BLOCK
(ASSUME THE BLOCK SIZE WAS PLACED IN WORD 0 OF THE BLOCK
ITSELF WHEN FETCHED IN THE LEAD TASK)

LDX* AZCR2 SET UP OUTLINE PARAMETER LIST
LDA* AZCR3 ESTABLISH AUDRESS OF BLOCK
STA 3,1

LDAY X CONSTRUCT POINTER TO THAT ADDRESS
ADD =3

STA 0,1 USE IT AS PARAMETER 1

LDA* AZCR3 FETCH ADDRESS OF THE .BLOCK
LDAQ* A ITS SIZE IS IN WORD 0

STA 1,1 SAVE AS PARAMETER 2

LDA AERRA SET UP ERROR RETURN ADDRESS
STA 2,1 USE AS PARAMETER 3

RBLS (X) RETURN THE BLOCK

RETURN CANNED BLOCK FETCHED IN LEAD TASK

4-14 AR22

AERRA
ERRA

ERRB

ERRC

*

*

AZCRL
AZCR2
AZCR3

RBLS

ZCR2,8,ERRB

ERRA

RETURN THE BLOCK

ERROR ON VARIABLE BLOCK RETURN

ERROR ON CANNED BLOCK RETURN

TERMINATE THE SECOND TASK

TMAS

DAC
DAC
DAC

ZCR1, ERRC

ZCR1
ZCR2
ZCR3

TERMINATE THE ACTIVITY

ERROR ON TERMINATION

PROVIDE LINKAGE AND PSEUDOREGISTER
DEFINITIONS

USER ACCESSIBLE PSEUDOREGISTERS ADDRESSES
(ACCESS INDIRECTLY TO ATTAIN TRUE SECTOR
ZERO WITHOUT J-BASE OFFSET)

In the following example, the activity is terminated using a nonre-
entrant outline parameter list.

ERRA

PLISTA
PLIST

PTTCB
TCB

NOTE:

LDX
TMAS

PLISTA
(X)

PLIST
PTTCB
ERRA

TCB

SET UP POINTER TO OUTLINE LIST
TERMINATE THE ACTIVITY

ERROR HALT

OUTLINE LIST ADDRESS
PARAMETER LIST, TCB ADDRESS POINTER
ERROR RETURN ADDRESS

TCB ADDRESS
TCB

There is no need to use a reentrant outline parameter list
for terminating an activity because pseudoregisters are
available for saving the task's TCB address.

AR22

ABTS

Abort Activity (ABTS) o0

—

The ABTS$ function enables a user program to abort a restricted activity.

FUNCTION ACTION

The ABTS$ action routine aborts the named activity. ABTS$ can be called only
by a nonrestricted activity, and the activity to be aborted must be a restricted
activity which is running or has been requested. If a restricted activity

attempts to call this function, it will itself be aborted.
The ABTS$ function is available only in DOS with system integrity.

MACRO CALL FORMAT

Location Operation Operand
[symbol] ABTS activity name block pointer,

error return address

symbol - Optional. The symbolic location of the ABT$ macro instruc-

tion.
activity name block pointer - The address of a 3Zword block containing
the name, in ASCCI, of the activity to be aborted.
. . ~~
error return address - The address to which control is to be returned
if an error is detected during the processing of the ABT$ func- —
tion call.
NORMAL RETURN
Control is returned to the calling program at the instruction following
the ABTS function call after the abort procedure has been initiated.
ERROR RETURN
When any of the following errors is detected, control is returned to the
error return address specified in the ABT$ parameter list with the error code
in the A-register.
A-Register
Contents
(Octal) Error Condition
34 Requested executive function is not
configured.
35 Requested executive function is
disk-resident, and there was a disk
error during an attempt to load the
function into main mewxory.
115 The activity to be aborted is not a s
restricted activity, ©Or was not _
requested.

4-16 AR22

ACTION ROUTINE DETAILS

The ABTS$ action routine searches the Resident/Requested Activity Directory
(RRAD) for an ACB containing the specified activity name. The RRAD is a gueue
in main memory containing the ACB's of all activities currently requested or
resident in memory. This includes activities which have been requested but
have not yet been brought into memory, activities which have been requested and
brought into memory but not yet dispatched, activities currently executing, and

reusable activities which have terminated but are still intact in memory.

If the ACB is not found in the RRAD, the error return to the caller is
taken with the appropriate error code in the A-register. If the ACB is found,
but indicates that the named activity is nonrestricted, the error return to the

caller is taken with the appropriate error code in the A-register.

Otherwise, the action routine sets the abort flag in the ACB, schedules
the abort task if this is not already running, and returns to the calling pro-

gram at the normal return.

If the named activity is not yet dispatched, the Activity Supervisor will
examine the ACB and refuse to proceed with the scheduling of the activity when
it sees that the abort flag is set. If the activity is already running, the
system will refuse to resume it or return to it from an executive function, and
the abort task will supervise the return of any system resources (open files,
reserved devices etc.) held by the activity. When all cleanup work has been
done, the ACB will be removed from the RRAD.

OUTLINE PARAMETER LIST

Word

Number Operation Operand
DAC activity name block pointer
DAC error return address

Parameters in the outline parameter list are the
same as those described above for the inline
parameter list.

Examples:

The example below shows the use of the ABTS$ function to abort -the
restricted activity named RESTAC.

ABTS$ ACTNAM, ABTERR ABORT THE ACTIVITY "RESTAC"
ABTERR ---- ERROR RETURN
ACTNAM BCI 3,RESTAC ACTIVITY NAME BLOCK

4-17 AR22

Using an outline parameter list, the above example would be written:

LDX
ABTS

ABTERR =-=---

PLIST DAC

ACTNAM BCI

PLIST
(X)

*+1
ANAME
ABTERR

3,RESTAC

SET UP POINTER TO OUTLINE LIST
ABORT THE ACTIVITY "RESTAC"

ERROR RETURN

ADDRESS OF OUTLINE LIST
POINTER TO ACTIVITY NAME BLOCK
ERROR RETURN ADDRESS

ACTIVITY NAME BLOCK

AR22

CCAS

Connect Clock Activity (CCA$)

A request for the execution of an activity on a timed basis (either cyclic
or noncyclic) is made by the CCAS$ function.
FUNCTION ACTION

The CCAS$ action routine connects a special system clock task to the timer
specified in the call. The routine generates a SAC$ function call parameter

list and passes it as a parameter to this special task.

CCAS then returns control to the calling program at the normal return.
When the time expires, the activity is scheduled.

A restricted activity cannot call the CCA$ function. If it attempts to do
so, the activity will be aborted.

MACRO CALL FORMAT

Location Operation Operand
[symbol] CCAS activity name address,
[levell],

[number of time units],
time unit type,
[connect typel,
[parameter 1],
[parameter 2],

error return address

symbol - Optional. The symbolic location of the CCAS$ macro instruc-
tion.

activity name address - The address of the first word of the 6-
character name of the activity. The name is left-justified,
right-filled with spaces.

level - Optional. The user-priority level number on which the task
is to be scheduled. If a level number lower than the lowest
user-priority level is specified, the lowest user-priority
level will be used to schedule the task.

If this parameter is omitted, the task is scheduled on the
default level specified for the activity.

number of time units - Optional. An integer expressing the number of
time units from now until the activity is to be scheduled.

If omitted, zero is used.

The range of this parameter depends on the time unit type
parameter.

4-19 AR22

time unit type - An integer specifying the units of time in which the
number of time units parameter is expressed.

1 = millisecond. The range of number of time units is 0
through 1023.

2 = half-second. The range of number of timé units is 0
through 4095.

4 = second. The range of number of time units is 0 through
4095.

8 = minute. The range of number of time units is 0 through
4095.

If omitted, the error return is taken with the value 1 in the
A-register.

connect type - Optional. An integer specifying whether the activity
is to be scheduled on a cyclic or noncyclic basis.

0 = cyclic.
1 = noncyclic.
If omitted, zero (cyclic) is used.

parameter 1 - Optional. A parameter word that can be used by the
calling program to pass data to the lead task. The action rou-
tine puts this parameter in word ZTCBPl of the lead task TCB.
If this parameter is omitted, a zero word is generated in the
TCB for word ZTCBPl. 1If parameter 2 is nonzero, parameter 1
must not be zero unless the free memory block parameter passing
technique is being used (see Appendix G, "Free Memory Block
Parameter Passing Technique").

parameter 2 - Optional. A parameter word that can be used by the
calling program to pass data to the lead task. The action rou-
tine puts this parameter in word ZTCBP2 of the lead task TCB.
If this parameter is omitted, a zero word is generated in the
TCB for word ZTCBP2. If parameter 1 is zero, parameter 2 must
be zero unless the free memory block parameter passing technique
is being used (see Appendix G, "Free Memory Block Parameter
Passing Techmique").

error return address - The address to which control is returned if an
error is found during the processing of the CCA$ macro call.

NORMAL RETURN

Upon normal return, the special system clock task has been connected to
the proper timer queue. The parameter to this special clock task is the pointer
to the SACS$ parameter list needed to schedule the activity. Also upon normal
return, the X-register contains the address of the TCB used to connect the spe-
cial system task to the clock. This address must be saved if a subsequent DCA$

(Disconnect Clock Activity) function call is to be issued.

ERROR RETURN

Control is returned to the error return address specified in the CCA$
parameter list with the error code in the A-register when any of the following

errors is detected:

4-20 AR22

A-Register

Contents .
(Octal) Error Condition
1 Timer not configured.
34 Requested executive function is not
configured.
35 Requested executive function is

disk-resident and there was a disk
error during an attempt to load the
function into main memory.

Because the activity is scheduled at a later time (when the special system
task is dispatched), errors discovered by the schedule activity action are

reported to the operator.

Operator Message Error Condition

SE= 100116 000036 actnam Activity not on disk.
SE= 100122 000036 actnam Disk error.

SE= 100126 000036 actnam There is no activity area for the
activity, or activity is too
large to fit into its area.

SE= 100030 000000 actnam Activity area will be overrun.
SE= 100031 000000 actnam Disk error while loading the
activity.

actnam - The name of the activity.

ACTION ROUTINE DETAILS

A clock TCB is generated for the special system clock task. A SAC$ param-
eter list is generated. The address of this list is placed in the clock TCB to
be passed as a parameter to the special system clock task.

After the special system clock task is connected to the proper timer

queue, return is made at the normal return.

At the time specified, the special system clock task is dispatched. This
task issues a schedule activity request, using the SACS$ parameter list passed to
it as a parameter. At this time, the regular SAC$ action proceeds (see descrip-
tion of the SACS$ function).

If the activity is to be cyclic, the special system task remains connected
to the clock, so that the activity is rescheduled when the time interval has
elapsed once more. This action continues until the clock activity is discon-
nected by the DCA$ (Disconnect Clock Activity) function. If the activity is to
be noncyclic, the special system clock task is disconnected from the clock,

after the activity is scheduled.

4-21 AR22

OUTLINE PARAMETER LIST

Word
Number Operation QOperand
0 DAC activity name address
1 DEC [levell
2 DEC [number of time units]
3 DEC time unit type
4 DEC [connect typel
5 DAC [parameter 1]
6 DAC [parameter 2]
7 DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list. If any of the
optional parameters are omitted, a BSZ 1
statement must replace the respective state-
ment. .

NOTE: The special system clock task is
scheduled on the same level as that
specified for the level parameter,
unless this parameter is omitted or
zero. In this case, the special
system clock task is scheduled on
the highest user level.

Examples:

The example below illustrates the use of the CCAS$ function to connect
an activity to the clock for noncyclic execution. The activity named
ACTNAM is to be connected to the clock for scheduling 4 hours (240
minutes) from now. The level at which the activity is scheduled is
the default level. One parameter, the address T1, is passed to the
activity.

CCA$ ANAME, , 240,8,1,T1, ,ERR DEFAULT LEVEL,SECOND PARAMETER
STX ATCB SAVE ADDRESS OF SPECIAL SYSTEM TASK TCB
ANAME BCI 3, ACTNAM ACTIVITY NAME BLOCK
*
T1 BSZ 30 PASS ADDRESS TO ACTIVITY AS PARAMETER 1
ATCB BSZ 1
ERR — ERROR RETURN

Using an outline parameter l1ist, the above example would be written as
follows:

4-22 AR22

PLIST

ANAME
T1
ATCB

ERR

LDX
CCAS
STX

DAC
DAC

BsSzZ 1

DEC
DEC
DEC
DAC
BSz 1
DAC

BCI

BSZ
BSZ

PLIST
.9
ATCB

*+1
ANAME

240
8

1
T1
0
ERR

3, ACTNAM
30
1

SET UP POINTER TO OUTLINE LIST

POINTER TO OUTLINE LIST
ACTIVITY NAME ADDRESS
DEFAULT LEVEL

240 MINUTES

MINUTES

NONCYCLIC

PARAMETER 1

DEFAULT PARAMETER 2
ERROR RETURN ADDRESS

ERROR RETURN

AR22

DCAS

Disconnect Clock Activity (DCAS)

The

gueue on

FUNCTION

The

DCAS function is used to disconnect a clock activity from the timer
which it resides.

ACTION

DCAS action routine removes the clock TCB from the timer queue on which

it resides, thus disconnecting the activity from the clock. It then returns all

associated blocks to free memory and returns control the caller.

A restricted activity cannot call the DCA$ function. If it attempts to do
so, the activity will be aborted.

MACRO CALL FORMAT

Location. Operation Operand
[symbol] DCAS TCB address pointer,

error return address

symbol - Optional. The symbolic location of the DCA$ macro instruc-

tion.

TCB address pointer - The address of the word in”which the address

of the clock TCB has been stored. This TCB address has been
returned to the caller in the X-register by a CCA$ function
call.

error return address - The address to which control is returned if

an error is found during the processing of the DCAS$ function
call.

NORMAL RETURN

Upon the normal return, the clock activity is disconnected from the clock.

ERROR RETURN

Control is returned to the error return address specified in the DCAS
parameter list when any of the following errors is detected:

A-Register

Contents
(Octal) Error Condition

34 Requested executive function is not
configured.

35 Requested executive function is disk-
resident and there was a disk error
during an attempt to load the func-
tion into main memory.

Not Significant The specified clock TCB was not found

in the timer queue. (There is no
specific error code associated with
this error.)

4-24 AR22

ACTION ROUTINE DETAILS

The special system TCB is removed from the timer queue on which it resides.
If, in a search of the timer queue, the given TCB cannot be found on the queue,
the error return is taken. After the TCB is removed, all associated blocks are

returned to free memory.

OUTLINE PARAMETER LIST

Word

Number Operation Operand
0 DAC TCB address pointer
1 DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list.

Examples:

In the example below, an activity is to be disconnected from the
clock. At some prior time, the activity has been connected to the
clock and the address of the special clock task TCB has been stored
in word ATCB (see the description of the CCA$ function). If this
TCB cannot be found in the clock queue, control returns to NOTCB.

DCAS ATCB, NOTCB
ATCB BSZ 1 CONTAINS TCB ADDRESS

NOTCB ———-) ERROR RETURN

Using an outline parameter list, the above example (with expanded
error analysis) would be written as follows:

LDX PLIST SET UP POINTER TO OUTLINE LIST
DCA$ (x)
PLIST DAC *+1 POINTER TO OUTLINE LIST
DAC ATCB TCB ADDRESS POINTER
DAC NOTCB ERROR RETURN ADDRESS
ATCB BSZ 1 STORAGE FOR TCB ADDRESS
NOTCB CAS =134 ERROR RETURN ~
NOP ASSESS THE CAUSE
CAS =136
NOP
SKP TCB IS NOT FOUND IN QUEUE
JMP FNCERR FUNCTION LOAD OR CONFIGURATION PROBLEM

4-25 AR22

SECTION V
QUEUE AND FREE MEMORY BLOCK MANAGEMENT

QUEUE MANAGEMENT

The queue executive functions allow the user to create a queue, add items
to the beginning (top) or end (bottom) of the gueue and remove items from the
beginning of the queue. In actual operation, the Create Queue function (CRQS$)
sets ﬁp a 2-word queue header. As items are added to the beginning or end of
the queue, the first word of the queue header points to the first item in the
gueue and the second word of the queue header points to the last item in the

queue.

The first word of each item in the queue points to the next item in the
queue. (The first word of the last item in the queue therefore is always zero.)

Pointer operation is illustrated in Figure 5-1.

The gqueue functions are:

e Create Queue (CRQS)

e Attach Entry to Queue (ATQS)

e Get Beginning Entry From Queue (GTQS$)

A gueue must first be created using the CRQ$ function. Thereafter, any
reference to this queue, for the purpose of gqueue management, must be made
through the queue header address given to the CRQ$ system function. The ATQS
function permits an entry to be made either to the beginning or the end of a
queue. Thus LIFO (last-in, first-out), and FIFO (first-in, first-out) queues
can be generated. A LIFO gqueue is generated by always attaching new items to
the beginning of the queue. A FIFO queue is generated by always attaching new

items to the end of the queue.

5-1 AR22

QUEUE HEADER

1ST WORD

2ND WORD

1ST WORD k___

ITEM 1
FIRST ITEM

IN QUEUE

)

1ST WORD

ITEM 2

)

1ST WORD

ITEM 3

)

L

1ST WORD

ITEM 3

5
7

—

AST WORD (0) - pe—

ITEMn LAST ITEM

IN QUEVUE

Figure 5-1. Queue Operation

AR22

CRQE

Create Queue (CRQS)

A queue can be initialized through the CRQ$ function.

FUNCTION ACTION

The CRQS$ system function initializes the queue as being empty and returns

control to the calling program at the normal return.

MACRO CALL FORMAT

Location Operation Operand
[symbol] CRQS queue header address,

error return address

symbol - Optional. The symbolic location of the CRQ$ macro instruc-
tion.

queue header address - The address of the first word of the queue
header.

error return address - The address to which control is returned if
an error is found during the processing of the CRQ$ function
call.
NORMAL RETURN

Upon normal return, the named queue header has been initialized.

ERROR RETURN

Control is returned to the error return address specified in the CRQS$
parameter list with the error code in the A-register when any of the following

errors is detected:

A-Register

Contents
(Octal) Error Condition
34 Requested executive function is not configured
in the system.
35 Requested execution function is disk-resident

and there was a disk error during an attempt
to load the function into main memory.
ACTION ROUTINE DETAILS

The two words of the queue header, identified by the queue header address
parameter, are assigned the value of zero, initializing the queue as an empty

gueue. Control returns to the calling program at the normal return.

5-3 AR22

OUTLINE PARAMETER LIST

Example:

The following example illustrates the use of the CRQS function to
initialize the queue header specified by RTRQ.

RTRQ

ERR

CRQS$

BSZ
BSZ

Word

Number Operation Operand
DAC gueue header address —
DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list.

CREATE A QUEUE HEADER

RTRQ, ERR

THE FOLLOWING WILL BE A QUEUE HEADER
1 START OF QUEUE
1 END OF QUEUE

ERROR RETURN

5-4 AR22

~~

ATQS

Attach Entry to Queue (ATQS)

The ATQS function is used to permit an entry to be attached either to the

beginning or the end of a queue.

FUNCTION ACTION

The ATQS action routine links the entry either to the beginning or the end

of the gueue and returns to the calling program at the normal return.

MACRO CALL FORMAT

Location Operation Operand
[symbol] ATQS‘ queue header address,

[queue attach mode],
gueue entry block address,
error return address
symbol - Optional. The symbolic location of the ATQ$ macro instruc-
tion.

gueue header address - The address of the first word of the queue
header. This address is the same as used in the CRQ$ function.

gueue attach mode - Optional. An integer specifying the place in
the gqueue to attach the entry.

0 - Attach to end of queue.
1 - Attach to beginning of queue. If omitted, zero is used.

gqueue entry block address - The address of the first word of the
entry block to be linked to the queue. The first word becomes
the link word.

error return address - The address to which control is returned if
an error is found during the processing of the ATQS$ function
call.

NORMAL RETURN

Upon normal return, the entry is linked either to the beginning or the end

of the specified gqueue.

ERROR RETURN

Control is returned to the error return address specified in the ATQS
parameter list with the error code in the A-register when any of the following

errors is detected:

5-5 AR22

A-Register

Contents
(Octal) Exrror Condition
34 Requested executive function is not
configured in the system.
35 Requested executive function is

disk-resident and there was a disk
error during an attempt to load the
function into main memory.

ACTION ROUTINE DETAILS

The specified entry is linked to either the beginning or end of the queue
as indicated by the queue attach mode parameter. Control is returned to the

calling program at the normal return.

OUTLINE PARAMETER LIST

Word
Number Operation Operand
0 DAC queue header address
1 DEC [queue attach mode]
2 DAC queue entry block address
3 DAC error return address

Parameters in the outline parameter list are the
same as those described above for the inline
parameter list. If the queue attach mode is
omitted, a BSZ 1 statement must replace the
respective statement.

Examples:

The example below illustrates the use of the ATQS function to attach
an entry to a queue. The entry specified as ENT will be attached to
the end of the queue RTRQ. An inline parameter is used in this

example.
* ATTACH AN ENTRY TO BOTTOM OF QUEUE
*
ATQS RTRQ, ENT, ERR
*
* THE FOLLOWING IS THE ENTRY TO BE ATTACHED
ENT BSZ 8
ERR - ERROR RETURN

In the example below, the ATQS function is used with an outline
parameter list to attach an entry to the beginning of the queue RTRQ.
The address of the first word of the entry is placed in word ENTA
(the third word of the parameter l1ist) before the ATQS function is
called.

5-6 AR22

LIST

ENTA

LDX
ATQS

DAC
DAC
DEC
BSZ
DAC

LIST
(X)

*+1
RTRQ

ERR

ATTACH AN ENTRY TO TOP OF QUEUE

GET LIST ADDRESS
ATTACH ENTRY TO QUEUE

PARAMETER LIST FOR ATQS

ADDRESS OF LIST

ADDRESS OF QUEUE HEADER
ATTACH TO BEGINNING OF QUEUE
FOR ENTRY ADDRESS

ERROR RETURN ADDRESS

AR22

GTQS

Get Beginning Entry From Queue (GTQS)

The GTQS function is used to access the entry currently at the beginning

of the queue, and to make the next entry in the queue the beginning entry.

FUNCTION ACTION

The GTQS$ action routine unlinks the entry from the beginning of the gqueue,
returns control to the calling program at the normal return with the address of
the unlinked entry, if the queue is not empty, or returns control to the

calling program at the error return if the gueue is empty.

MACRO CALL FORMAT

Location Operation Operand
[symbol] GTQS queue header address,

error return address
symbol - Optional. The symbolic location of the GTQS macro instruc-
tion.

queue header address - The address of the first word of the queue
header. This address is the same as used in the CRQ$ function

call.

error return address - The address to which control is returned if
an error is found during the processing of the GTQ$ function
call.

NORMAL RETURN

Upon normal return, the entry currently at the beginning of the gueue has
been unlinked. The X-register contains the address of the first word of this

entry.

ERROR RETURN

Control is returned to the error return address specified in the GTQS

parameter list when any of the following errors is detected:

A-Register

Contents
(Octal) Error Condition

34 Requested executive function is not
configured.

35 Requested executive function is
disk-resident and there was a disk
error during an attempt to load the
function into main memory.

Not Significant No entry in the queue; the queue is
empty. (There is no specific error
code associated with this error
condition.)

5-8 AR22

ACTION ROUTINE DETAILS

If the queue is empty, return is made to the error return. If the queue
is not empty, the entry at the beginning of the queue is unlinked. Its loca-

»~ tion is placed in the X-register, and return is to the normal return.

OUTLINE PARAMETER LIST

Word

Number Operation Operand
DAC queue header address
DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter 1list.

Examples:

In the following example, the GTQS$ function, is used with an inline
parameter list to obtain the first entry from the RTRQ gueue. If the
queue is empty when the GTQ$ function call is executed, then control
is transferred to location NENT so that the error can be processed.

* GET BEGINNING ENTRY FROM QUEUE

GTQS RTRQ, NENT

* ERROR RETURN IF QUEUE IS EMPTY
*
NENT ——
Using an outline parameter list, the preceding example would be
written as follows:
* GET BEGINNING ENTRY FROM QUEUE
*
LDX PLST GET LIST ADDRESS
GTQS (X) GET ENTRY
*
* PARAMETER LIST FOR GTQS
*
PLST DAC *+1 ADDRESS OF LIST
DAC RTRQ ADDRESS OF QUEUE HEADER
DAC NENT ERROR RETURN ADDRESS
*
* ERROR RETURN IF QUEUE IS EMPTY.
*
NENT ——
~~

5-9 AR22

FREE MEMORY BLOCK MANAGEMENT

lock executive functions are made to obtain or release a block of free
memory. The block functions are:
® Get Storage Block (GBLS)
® Return Storage Block (RBLS)

Free memory is divided into pools of different size blocks. The block
sizes in the system are configurable and may range from a minimum of four words
to the maximum configured length. The system provides only blocks that are 2"
words long; where n is an integer. However, the user can request blocks of any
size; if the requested block size is not configured, then he receives the next
larger configured block; if no larger block size is configured, an error status

is returned to the user.

When a block is requested and the pool for that block size is empty, the
error status is placed in the A-register and control returns to the user program
through the specified error address. In returning a block to free memory
through the RBL$ function, the block must have been obtained through a GBL$

function call.

The block function GBL$ and RBL$ may not be used by a restricted activity.
Attempt to do so will result in the activity being aborted.
p
In a 64K system, free memory blocks are located in bank 0. Therefore, an —
activity wishing to access a free memory block must either have bank 0 as its
A-bank, or use 64K indéxing.

5-10 AR22

GBLE

Get Storage Block (GBLS)

The GBLS function is used to allocate a block of free memory to the task

in which the macro routine is used.

FUNCTION ACTION

The GBLS$ action routine obtains a block of the size requested from free
memory, and returns to the normal return with the address of this block in the
X-register, if the block is available. The GBL$ function returns to the error

return if there are no blocks or if the size requested is illegal.

A restricted activity cannot call the GBL$ system function. If it attempts
to do so, the activity will be aborted.

Location Operation Operand
[symboll GBLS block-size,

[unused]},
[unusedl,
error return address
symbol - Optional. The symbolic location of the GBL$ macro instruc-
tion.

block-size - A positive integer specifying the number of words
required. If it is not a power of two, the next larger integer
which is a power of two is used.

unused - Optional. This parameter position is not used in the cur-
rent release of 0S/700. However, the parameter position is
maintained for compatibility with Release 0100 of 0S/700.

unused - Optional. This parameter position is not used in the cur-
rent release of 0S/700. However, the parameter position is
maintained for compatibility with Release 0100 of 0S/700.

error return address - The address to which control is returned if
an error is found during the processing of the GBLS function
call.
NORMAL RETURN . *

Upon normal return, the address of the first word of the block obtained

from free memory is in the X-register. -

ERROR RETURN

Control is returned to the error return address specified in the GBLS
parameter list with the error code in the A-register when any of the following

errors is detected:

5-11 AR22

A-Register

Contents
(Octal) Error Conditic:..
No blocks available.
Block size was zero, less than zero, or
larger than the largest configured block.
34 Requested executive function is not

configured.

ACTION ROUTINE DETAILS

The block size parameter is examined to determine if it is greater than
zero. If not, return is made through the error return address. Otherwise, if
block size is not a power of 2, the size is increased to the next higher power
of 2.

An attempt is made to obtain the block from free memory. If a block is
available, return is made to the normal return. If a block of the size
requested is not available, return is made to the error return. If a block of
the size requested is not configured, and a block of a larger size is configured
and available, then the larger block is allocated to the user program and the

normal return is taken.

OUTLINE PARAMETER LIST

word
Number Operation Operand
0 DEC block size
1 BSz1 [unused]
2 BSZ1 [unused]
3 DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list.

Examples:

In the following example, a block of 32 words is to be obtained. If
no 32-word block is available, then control is transferred to location
BER, with the "no-block" status in the A-register. If the 32-word
size is larger than the largest configured block size, then control is
transferred to location BER, with the "illegal size" status in the
A-register. If there are no 32-word blocks configured in the system,
but there are larger size blocks, an attempt is made to obtain the
next largest size block. The user is unaware of the increased size of
the block; he uses it as a 32-word block and returns it to free

memory as a 32-word block. The Return Block action routine will
return the block to the correct block pool.

-

5-12 AR22

BER

GBLS

STX

32,,,BER
ADDB

BER1

GET A BLOCK OF FREE MEMORY

SAVE ADDRESS OF FREE MEMORY BLOCK

ERROR RETURN, DETERMINE CAUSE OF ERROR
WAS SIZE TOO LARGE?

YES, OR FUNCTION NOT CONFIGURED

NO, NO BLOCK AVAILABLE

Using an outline parameter list, the above example would be
written as follows:

BER

BLST

LDX
GBLS$
STX

SZE
JMP

DAC
DEC
BSZ 1
BRSZ 1
DAC

BLST
(xX)
ADDB

BER1

*+1

32

BER

GET A BLOCK OF FREE MEMORY

GET ADDRESS OF PARAMETER LIST
GET STORAGE BLOCK

SAVE ADDRESS OF FREE MEMORY BLOCK

ERROR RETURN, DETERMINE CAUSE OF ERROR
WAS SIZE TOO LARGE?

YES, OR FUNCTION NOT CONFIGURED

NO, NO BLOCK AVAILABLE

PARAMETER LIST FOR GBLS CALL
ADDRESS OF LIST

BLOCK SIZE = 32 WORDS
UNUSED

UNUSED

ERROR RETURN ADDRESS

AR22

RBLS

Return Storage Block (RBLS)

The RBL$ function is used to return a block to free memory.

FUNCTICON ACTION

The RBL$ action routine returns the specified block to free memory, and
returns to the calling program at the normal return, or returns to the calling
program through the error return if the block size is larger than that of any

block size configured.

A restricted activity cannot call the RBL$ system function. If it attempts
to do so, the activity will be aborted.

MACRO CALL FORMAT

Location Operation Operand
[symbol] RBLS block address pointer,

block size,
error return address
symbol - Optional. The symbolic location of the RBLS$ macro instruc-
tion.

block address pointer - The address of a word containing the address
of the first 'word of the block to be returned. This block
address must have been obtained through a GBL$ function call.

block size - An integer specifying the size of the block (in words)
to be returned. This integer is the same as the block size in
the GBLS parameter list used to obtain the block.

error return address - The address to which control is returned if
an error is found during the processing of the RBL$ function
call.

NORMAL RETURN

The normal return is made to the calling program when the block is returned

to free memory.

ERROR RETURN

Control is returned to the error return address specified in the RBLS$
parameter list with the error code in the A-register when any of the following

errors is detected:

5-14 AR22

A-Register

Contents
(Octal) Error Condition
0 Block size was zero or less, or block
size was too large.
34 Requested executive function not

configured.

ACTION ROUTINE DETAILS

The block size parameter is examined. If it is not greater than zero,
return is made to the error return. If a block size is not a power of 2, the
size is increased to the next higher power of 2. If the result is larger than
any size configured, return is made to the calling program through the error
return. If not, the block is returned to free memory, and return is made to the

ca3lling program at the normal return.

OUTLINE PARAMETER LIST

Word
Number Operation Operand
0 DAC block address pointer
DEC block size
DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list.

Examples:

In the example below, the address of the 32-word block that is to be
returned to free memory is stored in word ADDB before the RBLS func-
tion call is executed. If the 32-word size is larger than the largest
configured block size, then control is transferred to instruction SERR
so that the error can be processed.

* RETURN STORAGE BLOCK
*
RBLS ADDB, 32, SERR
*
* BLOCK SIZE IS IN ERROR
*
SERR —_——— R
*
* THE FOLLOWING LOCATION WILL CONTAIN THE
* ADDRESS OF THE BLOCK TO BE RETURNED
ADDB BSZ 1

Using an outline parameter list, the above example would be written
as follows:

5-15 AR22

PLST

ADDB

LDX

RBLS

DAC
DAC
DEC
DAC

BSZ

PLST
(X)

*+1
ADDB
32
SERR

RETURN STORAGE =21-'CK

GET ADDRESS OF LIST
RETURN BLOCK

BLOCK SIZE ERROR

PARAMETER LIST

ADDRESS OF LIST
BLOCK ADDRESS POINTER
SIZE = 32 WORDS

ERROR RETURN ADDRESS

. ADDRESS OF FREE MEMORY BLOCK

£-1i6

AR2:Z

SECTION VI
CONTROLLING PHYSICAL I/O OPERATIONS

This section describes the executive functions used for physical I/0 opera-
tions for all peripheral devices except communications equipment (communication

functions are described in the 0S/700 Communications manual.) Certain functions

peculiar to physical I/O operations on the disk are described in the 05/700

File Management manual.

PHYSICAL I/0 EXECUTIVE FUNCTIONS

Physical I/0 macros are used to initiate physical I/0 operations on all

peripheral devices that can be used under System 700. They include:
e Assign Device Control Block (DCBS$)

Reserve a Device (RSVS$)

Release a Device (RELS)

Input (INPS)

Output (OTPS)

Write End of file (EOFS)

Space File (SPFS$)

Space Record (SPRS)

Rewind (RWDS$)

Unload (ULDS$)

Wait for I/0 (WIOS)

For physical I/O operations on disks supervised by the Volume Manager, the
following functions are used, in addition to the INP$, OTP$, and W10$ men-

tioned above:

® Assign Volume Control Block (VCBS)
e Connect Volume (CVLS)
e Disconnect Volume (DVLS$)
® Allocate Work Area (ALCS)
e Deallocate Work Area (DLCS)

These functions are described in the 0S/700 File Management manual. Disks not

supervised by the Volume Manager (e.g., disk units configured in a COS) are
utilized as normal peripheral devices as described in this section. Refer to

the 0S/700 Svstem Generation manual for details of disk unit configuration.

6-1 AR22

Physical I/0 operations may be requested on input and output devices which
have been configured into the system. Before any physical I/0 request is issued,
a device control block must be generated, and the desired device reserved using
a RSVS$ call. (When performing physical I/O operations on a disk supervised by
the Volume Manager, a volume control block must be generated, and a CVL$ call

issued. (See the 05/700 File Management manual.) Peripheral devices, with the

exception of disk units supervised by the Volume Manager fall into two classes.
Disk units are sharable; they may be reserved even if currently reserved. They
are also public; the user ID is ignored. All other peripherals are nonsharable
and private; they may not be reserved if currently reserved, and require a
user ID when being reserved so that subsequent physical I/0 requests can be
verified. A disk unit supervised by the Volume Manager is sharable, but may
be public or private depending on the type of volume mounted on the unit. The
physical I/0 requests include:

e Input (INPS)
Output (OTPS$)
Space File (SPFS$)
Space Record (SPRS$S)
End of file (EOFS)
Rewind (RWDS$)

A Wait for I/O (WIOS$) function call must be issued following each of these
physical I/O function calls. When the physical I/0 op€ration is completed,
execution of the user's activity resumes at the I/O completion return address.

At this point, the user must determine whether the operation was successful by
examining the status block supplied with the I/O request. See Appendix B for

the specific information returned by each device driver. When all of the physical
I/0 requests for the device which was reserved have been completed, the device
must be released by issuing a Release (REL$) function call. If the device is
magnetic tape or cassette, an Unload (ULDS$) call may be used as an alternative

to the Release cali; the Unload call rewinds the device before releasing it.

Input and output operations under 0S/700 are handled by the system in the
following manner. The user (or the system) makes a request for a specific I/0
function by calling one of the six I/O executive functions listed above. The
system checks the request for legality, initiates the operation on the speci-
fied device, and returns immediately to the caller, who continues to run at the
same priority level while the I/0 is in progress. Ultimately the device signals
the completion of the operation by means of an interrupt, which causes the
system to schedule the caller's I/0 completion code as a new task, at the same
priority level at which the caller was running when he made the I/0 request.
This new task, however, cannot be dispatched while the user's previous task is
still running (or suspended), since no two tasks can run at the same priority
level concurrently. The user must therefore call the WIOS executive function
when he is ready to have the I/0 completion code executed; this function
ferminates the current task and allows the I/0 completion code to be dispatched.

6-2 AR22

In systems with more than 32K of memory or with the System Integrity
option, the I/0 completion code is scheduled using an I/0 TCB from the free
memory pool. The new task starts execution in the WIO$ action routine, which
returns the I,/0 TCB to free memory, to free the caller of this responsibility,
before exiting to the caller's I/0O completion code. In other systems, where
the new task starts at the caller's I/0 completion code itself and not in the
executive, the caller's I/O status block is used as a TCB to avoid having a

free memory block to return.

The user need not normally concern himself with the fact that the WIOS
function terminates his current task and dispatches the remainder of his code
a5 a new task. The program continues to run on the same priority level as
before, and the WIO$ function also has an option that allows the program's
registers to be saved through the call. The user does not even have to re-
turn the TCB used to schedule the I/0 completion task, for the reasons de-
scribed above. To all intents and purposes it is as if the same user task had
continued to run throughout. However, the user must be aware that if he calls
any other executive function which implicitly terminates his current task
between the I/O request and the WIO$ call, this may allow the I/0O completion
code to be dispatched before the user is ready for it. Any executive function
call which causes I/0O to be performed on behalf of the user, e.g., to the
operator's console (TYP$ or TPR$ request) or to the disk (file operations) will
implicitly terminate the current task, and may cause the user's I/0 completion
code to be dispatched prematurely. This includes any executive function which
may be disk-resident, such as the queue handling routine, since disk input
must be done in order to read the executive function action routine into the

system overlay area.

The safe course, therefore, is for the user to ensure that no executive
functions are called between an I/O request and the WIO$ call following it,
except for the following functions which are always memory-resident:

® A concurrent I/O request (INP$, OTPS$, SPF$, SPRS, EOFS, RWDS)

'® GBL$ and RBL$ (get and return free memory block) - if configured

e CTC$ and STC$ (create and schedule TCB), STSS (schedule task),
and SUSS (suspend task)

As implied above, the user can do parallel I/0 on two or more devices by
making two or more consecutive I/0 requests. There must be one WIOS$-call
for each I/0 request. I/0 completion routines will be dispatched in the order
in which the operations are completed, not the order in which the requests were
made. Each I/O completion routine must therefore contain code to test whether
or not the other I/O completion routines have yet been executed, to determine

whether or not a further WIOS call is necessary.

6-3 AR22

In several cases the caller's I/0 completion code 1s not schneduled to
start execution directly at the I/0 completion return. Instead the system
schedules a task within the WIO$ action routine, which will then return to the
calier's I/0 completion address through the function manager. This 1is an ad-
ditional reason why the user must always call the WIOS function to allow the
1/0 completion routine to be executed, and never use TMT$, for example. This
method enables the WIO$ action routine to preserve the caller's registers
(if this option is specified), and also to ensure that in a 64K system the 1/0
completion routine is executed with the correct banks set up. Note that in a
64K system if the register preservation option is specified on the WIOS$ function
call, the I/0 completion code will be executed with the banks which were set up
when the WIOS call was made, whereas if the register preservation option 1is
not specified, the I/0 completion code will be executed with the banks which
were set up when the activity was dispatched (the banks specified in the
ACB). This need not concern the user unless he has performed explicit bank

switching within the activity.

Because the executive uses the I1/0 status block for the storage of data
during the processing of the I/0 request, and can use it as a TCB to schedule
the user's I/0O completion code, the following rules must be observed:

e The user must not alter the contents of the status block
between the time he makes the I/O request and the time he
calls the WIOS$ function. To do so could interfere with
the dispatching of the I/0 completion code, since this task
could already have been scheduled by the system before the
WIOS call was made.

e If two or more I/0 operations are in progress concurrently;
i.e., if the user has made another I/0 request before ex-
ecuting a WIO$ call for a previous request, he must supply
a separate status block for each request.

The RSV$ request with a queued reserve return address specified works in
a manner analogous to that of an 1/0 request. If the error return to the user
is taken and the error code indicates that the device is currently not avail-
able, this means that when the device is available the system will schedule the
user's special return as a new task. 1In this case, the user must make a WIOS call

when he wishes to wait for the device, and the considerations described above

also apply.

The Unload (ULD$) function works differently from the other six I/0 func-
tions, and does not need to be followed by a Wait for I/0 call. When the
rewind operation is completed, the system does not schedule a user routine, but
instead schedules a system task which takes care of releasing the device and
terminates automatically. The user therefore need not concern himself any

further after making the ULDS$ call, and can treat ULDS like any other non-1/0

system function.

6-4 AR22

Restricted activities may issue requests for all of the physical 1I/0

functions listed previously; however, there are certain limitations enforced

by the operating system.

1.

All parameter specified directly or indirectly by the I/0
parameter lists must like within the activity area, or
the activity will be aborted.

Each device reserved and volume connected by the activity
is recorded. For each I/0 request issued by the activity,
a check is made to determine if the requested device or
volume is recorded as being allocated to the activity. If
it is not recorded, the I/0 request is rejected. This
record of devices and volumes allocated is also used to
release them if the activity is aborted or terminates
prematurely.

The number of outstanding I/0 requests is also recorded.
More than one I/O request may be issued by the activity
prior to a WIO$ request; however, while there is one or
more I/0 requests outstanding, only I/O and WIO$ requests
may be issued by the activity. The activity will be
aborted if any other request, including RSV$ and RELS

is issued. A ULD$ request will be rejected if the activity
has an I/0 request outstanding on the same device for
which the ULDS request was issued.

If a WIOS$ request is issued and there are no I/0 requests
outstanding or a queued reserve request waiting to be
processed, the activity will be aborted.

If one or more I1/0 requests are being processed when a
restricted activity is aborted, the devices being used
by the activity will not be released and the activity
will not be terminated by the abort task until all the
requests have been completed. However, there is no wait
for the queued I/0 requests that have not been initiated;
they are removed from the queue.

AR22

DCBS

Assign Device Control Block (DCBS)

The DCBS$ call generates a list of parameters required for Reserve (RSVS) ,.
Release (RELS$), Input (INP$), Output (OTPS), Space File (SPF$), Space Record
(SPR$), End of file (EOF$), Rewind (RWDS), and Unload (ULD$) functions.

MACRO EXPANSION

The DCBS macro call is expanded when the program is assembled to generate

a list of

parameters which contain no executable code.

MACRO CALL FORMAT

Location QOperation Operand
DCB name DCBS$ [generic device typel,

[logical unit number],
data mode, [user-ID],
I/0 status block address,

I/0 completion return address

DCB name - The symbolic location of the device control block created

by the DCB$ macro instruction.

I4

generic device type — Optional. A number indicating the generic type

of device which is to perform the I/0O operation. Refer to
Appendix D for the assignments of the generic device types. The
default value is minus one (=1), and implies the system disk.

If the generic device type is -1, the generic device type and

the logical unit number for the system disk will be stored in the
user's DCB$ parameter list.

logical unit number — Optional. A number that specifies the logical

data

user-—

unit of a generic device type which is to perform the I/O
operation, (logical unit numbers are assigned to units when the
system is configured.). For example, assume that the system

is configured for two magnetic tape controllers and that each
controls four units. The physical unit numbers for the units
on each of the controllers range from 0 to 3. The logical unit
numbers for the units on both of the controllers range from 0
to 7.

The default value is minus one (-1), and may be used only when
the generic device type is the default value (-1).

mode - A number which specifies the kind of data transfer that
is to be performed. Refer to Appendix C for the assignment of
the types of data modes.

ID — Optional. One word (16 bits) of identification. This
must be nonzero when reserving a private device. It is ig-
nored when reserving a public device.

1/0 status block address - The address of an 8-word block. For 1/0

requests, the status block is used by the device driver to
achedule the I/0O completion return to the user and to store
the status information as described in Appendix B. The I/0
status block address is in the X-register when control is
returned to the user at the I/0 completion return address or
at the queued RSV$ request return address.

b=
X
[N

6-6

[]

I/0 completion return address - The address where control is to
be returned after I/0 completion.

MACRO CALL ACTION DETAILS

The code produced by the DCBS macro call has no action since it is a list
of parameters. The DCB$ macro call must therefore be coded in a program as a

data block or buffer.

OUTLINE PARAMETER LIST

Word Number Operation Operand
0 BSZ 1 (Reserved for system use)
1 DEC [generic device typel
2 DEC [logical unit number]
3 DEC data mode
4 oCcT [user-ID]
5 DAC I/0 status block address
6 DAC I/0 ccmpletion return address

The parameters in the outline parameter list are the same as those
described above for the inline parameter list. However, note that

the first word of the list must be a BSZ 1 statement. If the generic
device type and the logical unit number are not specified, the respec-
tive DEC statements must be replaced with DEC -1 statements. If the
user-ID is not specified, a BSZ 1 statement must replace the appro-
priate OCT statement.

Examples:

The example shown below illustrates the generation of a device control
block by issuing a DCB$ request.

* GENERATE A DCB TO BE REFERENCED WHEN MAKING
* I/0 REQUESTS
* FOR MAGNETIC TAPE, LOGICAL UNIT NO. 1

DCNM DCBS$ 10,1,0,'146724,TBAD,RTAD

TBAD BSZ 8 I/0 STATUS BLOCK, TBAD+1 WILL CONTAIN O IF
* NO ERROR OCCURRED ON I/0 COMPLETION
*

LNKS LINK TO SYSTEM

6-7 AR22

The example below shows how the device control k7 .ck would be written
without the use of a DCB$ request.

*

DCNM BSZ
DEC
DEC
DEC
BCI
DAC
DAC

TBAD BSZ

LNK$

10

1,MT
TBAD
RTAD

GENERATE A DCB TO BE REFERENCED WHEN MAKING
I/0 REQUESTS FOR MAGNETIC TAPE, LOGICAL
UNIT NO. 1

RESERVED FOR SYSTEM USE.

GENERIC DEVICE TYPE FOR MAGNETIC TAPE
LOGICAL UNIT NUMBER 1

DATA MODE (ASCII).

USER ID.

1I/0 STATUS BLOCK ADDRESS

I/0 COMPLETION RETURN ADDRESS

I/0 STATUS BLOCK, TBAD+l WILL CONTAIN O IF
NO ERROR OCCURRED ON I/O COMPLETION

LINK TO SYSTEM.

In the above example, the device control block is formatted by the
user and no DCB$ macro call is made.

AR22

RSVS

Reserve Device (RSV$)

The RSV$ system function associates a peripheral device with a user-ID.
The device may be nonsharable, in which case only one RSV$ request for the de-
vice will be honored until the device is released, or sharable, in which case

simultaneous RSV$ requests will be honored.

If a disk unit supervised by the Volume Manager is to be used, a CVLS$

regquest should be made instead of RSVS.

The I/0 devices reserved and the volumes connected by a restricted activity
are reccorded by the operating system. This allows the operating system to re-
lease the devices reserved and the volumes connect if the restricted activity is
aborted or terminates prematurely. In addition it allows the operating system
to ensure that the I/0O requests made by a restricted activity are permissible.

ROUTINE ACTION

The RSV$ system function checks the parameters in the RSV$ parameter list
and the device control block, and takes the error return if any of them is
illegal. If the requested device is nonsharable and already reserved, the error
return will be taken. If, however, the user has specified a queued reserve
return address in the parameter list, the request will be gqueued before taking
the error return. The user is then notified when the device becomes available.
If the device is not reserved, or is sharable, the device will be reserved and

the normal return taken.

MACRO CALL FORMAT

Location Operation Operand

[symbo1] RSV$ DCB address,
error return address,
[queued RSV§ request return address ,
[control-P TCB address pointer)
symbol - Optional - The symbolic location of the RSV$ macro instruc—
tion.

DCB address - The name of the device control block associated with
the device to be reserved.

6-9 AR22

error return address - The address to which cor:irel is returned if

an error is found in the RSV$ parameter list, the specified
@ev1ce control block parameters, or if the syecified device
is currently reserved.

queued RSV$ request return address - Optional. The address to

which control is transferred after a queueud reserve request
is fulfilled. If this address is present in the RSV$ param-
eter list, and if the requested nonsharable device was al-
ready reserved when the reserve request was issued, the
reserve request is queued according to the priority level of
the task that issued the RSVS request. Control is then
transferred to the error return address with zero in the
A-register, which indicates that the requested device is
already reserved. The user who issued the reserve request
must at this time issue a WIO$ macro instruction to wait

for the requested device to be reserved. When the user's
reserve request is removed from the reserve request queue
and processed, control will be transferred to the user at
the queued RSV$ request return address with the I/O status
block address in the X-register.

If the queued RSVS$ request return address is not specified
(equal to zero) in the RSV$ parameter list, and the re-
quested device was already reserved when the reserve re-
quest was issued, control is transferred to the error re-
turn address with zero in the A-register. The reserve
request is not queued in this case.

control-P TCB address pointer - Optional. A pointer to a word

that contains the address of a TCB. This TCB must have
been created by the user before the RSVS$ request was
issued. The TCB may be created by the use of the Create
TCB macro (CTC$). The TCB must contain the address of a
special action routine which will be scheduled by the KSR
or ASR driver when a control-P character is t¢yped on the
KSR or ASR keyboard. The special action routine must be
within the same activity which contains the RSV$ request.
This parameter is optional when the requested device is
either the KSR (generic device type 0) or the ASR (generic
device type 12), and is ignored for other devices. The
control-P TCB may not be used by a restricted activity.
(If the control-P TCB address is specified, it is ignored) .

NORMAL RETURN

Contro
RSVS$ macro call,

QUEUED RSV$ REQUEST RETURN

After a WIO$ request has been completed,

RSV$ request return address when the reserve request whic

filled.

ERROR RETURN

Control is returned to the error retu

eter list with the error code in the A-register when any of the following errors

is detected.

1 is returned to the calling program at the instruction followin

g the

after the requested device has been reserved for the caller.

control is returned to the gqueued

h was queued is ful-

rn address specified inthe RSV$ param-

AR22

A-register
Contents
(Octal)

0

14

30

31

33

34

35

155

Error Condition

The requested device, which is nonsharable, was al-
ready reserved when another RSV$ request was issued.

The generic device type specified in the device con-
trol block is not configured for this system.

The logical unit number specified .in the device con-
trol block is not configured for this system.

An RSVS request was issued for a disabled device.

The device driver for the requested device is disk
resident, and there was an activity area overrun
error while loading the device driver.

The device driver for the requested device is
disk resident, and there was a disk read error
while loading the device driver.

The device driver for the requested device is
disk resident, the queued RSV$ request return
address is null (equal to zero) in the RSVS$
parameter list or the request was made by a
restricted activity, and the activity area
for the device driver is in use by another
device driver or activity.

Requested executive function is not configured.
Requested executive function is disk resident
and there was a disk error during an attempt
to bring the function into main memory.

illegal reserve request.

ACTION ROUTINE DETAILS

The following checks are made to determine if the RSV$ request is legal:

1.

A test is made to determine if the generic device type and the
logical unit number specified in the device control block have
been configured into the system.

A test is made to determine if the requested device is enabled.

A test is made to determine if the I/0 status block address is
specified (#0) in the device control block.

A test is made to determine if the user-ID specified in the de-
vice control block is nonzero when a nonsharable device is requested.

If the RSVS$ request is not legal, control is returned to the error return

address

specified in the RSV$ parameter list with the error code in the A-

register.

device driver for the requested device is disk resident, and if it is, the

If the RSV$ request is legal, a test is made to determine if the

device driver is brought into main memory.

AR22

Now, if the device is sharable, or is nonsharal’e but not currently re
served, it is reserved for the caller, and control is eturned to the user at
the normal return. If a nonsharable device is already reserved, a test is made
to determine if the queued RSV$ request return address specified in the RSVS$
parameter list is omitted (equal to zero). If omitted, control is returned
to the error return address specified in the RSV$ parameter list with zero in -
the A-register. If the queued RSVS$ request return address is specified, the
Reserve request is gqueued according to the priority level of the task which is-
sued the RSVS$ request, and control is returned to the error return address

specified in the RSV$ parameter list with zero in the A-register.

When control is returned to the user at the error return address with a
zero in the A-register, and the queued RSV$ request return address was speci-
fied in the RSVS$ parameter list, the user must issue a WIOS$ request to wait
for the device to be reserved. When reserve request is processed, control is

returned to the user at the queued RSV$ request return address.

If a nonrestricted activity specifies a queued reserve return address,
regardless of whether the device is sharable or nonsharable, a reserve request
for a device with a disk-resident driver will be honored even if the driver's
activity area is occupied by another activity. When the activity area becomes
available, the driver will be loaded into main memory, the device reserved, and
the normal return taken to the caller. If the queued reserve return address
is not specified, or if the activity is restricted, and the driver may not be

loaded into main memory immediately, the error return is -taken.

OUTLINE PARAMETER LIST

word Number Operation Operand
0 DAC DCB address
1 DAC error return address
2 DAC [gqueued RSV$ request return address]
3 DAC [control-P TCB address pointer]

The parameters in the outline parameter list are the same as those
described above for the inline parameter list. Note that if it is
not desirable to have the reserve request gqueued when the requested
device is already reserved, word 2 must contain a BSZ 1 statement.
If the RSV$ call is for an ASR or KSR device and the control-P TCB
address pointer is not specified, a BSZ 1 statement must replace
the respective DAC statement. If the RSV$ call is not for an ASR
or KSR device, this parameter should be omitted.

Examples:

The examples below illustrate the use of the RSV$ function to re-

serve a device so that I/C requests for magnetic tape logical unit 1

can be prccessed. The device control block is designated by the

name DCNM (see the examples under "Assign Device Control Block (DCB$)"

above). The gqueued reserve request return, QUED, specifies that the o~
reserve request is to be added to the reserve request gueue if the

magnetic tape, legical unit 1, has already been reserved by ancther

user.

6-12 AR22

RESERVE DEVICE

RSVS DCNM,ERAD,QUED RESERVE THE MAGNETIC TAPE, LOGICAL UNIT

ERAD SZE
JMP ERR
JST SETP
WIOS

*

*

*

QUED -

NO. 1

NORMAI, RETURN, RESERVE PROCESSED, 1I/0 MAY
BE ISSUED

ERROR RETURN - A-REGISTER CONTAINS ERROR
CODE.

WAS CALL QUEUED?

NO, PARAMETER IN DCB ILLEGAL.
YES, SET UP FOR I/0 CALL.

WAIT FOR RESERVE TO BE PROCESSED.

QUEUED RESERVE REQUEST RETURN AFTER RESERVE
IS PROCESSED.

RESERVE PROCESSED, I/0 MAY BE ISSUED.

Using an outline parameter list, the above example would be written

as follows:

LDX PLT1

RSVS (X)

* ———

*

*

*

*

ERAD SZE
JMP ERR
JST SETP
WIO$

PLT1 DAC *+1

DAC DCNM
DAC ERAD
DAC QUED

RESERVE DEVICE

PARAMETER LIST POINTER TO X.
RESERVE THE MAGNETIC TAPE, LOGICAL UNIT NO. 1

NORMAL RETURN, RESERVE PROCESSED, I/0 MAY BE
ISSUED.

ERROR RETURN - A-REGISTER CONTAINS ERROR CODE.

WAS CALL QUEUED?

NO, PARAMETER IN DCB ILLEGAL.
YES, SET UP FOR I/0 CALL.

WAIT FOR RESERVE TO BE PROCESSED.

QUEUED RESERVE REQUEST RETURN AFTER RESERVE
IS PROCESSED.

RESERVE PROCESSED, I/0 MAY BE ISSUED

PARAMETER LIST

. POINTER TO PARAMETER LIST

DCB ADDRESS
ERROR RETURN ADDRESS
QUEUED RESERVE REQUEST RETURN ADDRESS.

6-13 AR22Z

RELE

Release Device (RELS)

The RELS$ function is used to release a device previously reserved by a

RSVS$S function call.

If a restricted activity is aborted or terminates, all devices reserved
by the activity but not released are released for the activity by the operating

system,

FUNCTION ACTION

The REL$ action routine checks to determine the legality of the parameters
specified in the device control block and takes the error return if any param-
eter is illegal. Otherwise, it releases the specified device. The REL$ action
routine also checks the reserve request queue for users waiting to reserve the
released device, and reserves the device for the user of the highest priority.
Then, it returns to the calling program at the normal return.

MACRO CALL FORMAT

Location Operation Operard
[symbol] RELS$ DCB address,

error return address

symbol - Optional. The symbolic location of the RELS$ macro instruc-
tion.

DCB address - The name of the device control block associated with
the device to be released.

error return address - The address to which control is returned if
an error is found in the specified device control block param-
eters or if the device was not previously reserved.

NORMAL RETURN

After the specified device has been released, control is returned to the

calling program, at the instruction following the REL$ request.

ERROR RETURN

Control is returned to the error return address specified in the RELS
parameter list with the error code in the A-register when any of the following

errors is detected:

A-register

Contents
(Octal) Error Condition
1 The generic device type parameter specified in

the device control block is not configured feor
this system.

6-14 AR22

A-register

Contents
(Bctal) Error Condition
3 The logical unit number specified in the device
control block is not configured for this system.
10 The device was not previously reserved. The user-
ID specified in the device control block is not
correct, or the disk resident driver for the de-
vice is not currently resident in main memory.
15 The device was not reserved by the restricted
activity that issued the REL$ request.
34 Requested executive function is not configured.
35 Requested executive function is disk resident and
there was a disk error during an attempt to load
the function into main memory.
154 An I/0 request is being processed on the device

requested to be released, and fulfillment of the
REL$ request would mean that no one had the de-
vice reserved.

ACTION ROUTINE DETAILS

The following checks are made to determine if the release request is

1.

5.

A test is made to determine if the generic device type and the
logical unit number specified in the device control block have
been configured into the system.

A test is made to determine if the driver for the specified de-
vice is currently resident in main memory.

A test is made to determine if the user-ID specified in the
device control block matches the ID for which the device was
reserved.

A test is made to determine if there is an I1/0 request being
processed on the specified device. If there is nc I/0 request
being processed, the RELS$ request is legal. If there is an I/0
request being processed, and the device is nonsharable, the

REL$ request is illegal. If there is an I/0 request being proces
and the device is sharable, another test is made to determine if
the device will still be reserved for another user if the RELS
request is fulfilled.

If the activity is restricted, a test is made to determine if the
specified device was reserved by the activity.

If the RELS request is not legal, control is returned to the error return

address specified in the RELS$ parameter list
register.
check is then made to determine if there are

queue.

returned to the user at the normal return.

If the REL$ request is legal, the specified device is released.

If there are no users waiting to reserve the device, control is

the reserve request queue, the device is reserved for the user of highest

legal:

sed,

with the error code in the A-

A

entries in the reserve request

If there are one or more entries in

priority, the queued RSV§ request return address is scheduled and control is

returned to the user who issued the REL$ request at the normal return.

AR22

OUTLINE PARAMETER LIST

Word Number

1

Operation Operand
DAC DCB address
DAC error return address

The parameters in the outline parameter list are the same as those
described above for the inline parameter list.

Examples:

The examples shown below illustrate the use of the RELS$ function
to release the magnetic tape, logical unit 1, specified in the
device control block, DCNM (see the examples under Assign Device
Control Block (DCBS) above).

* RELS$ DCNM, ERAD

ERAD -—-—-

RELEASE DEVICE

RELEASE LOGICAL UNIT NO. 1 OF THE MAGNETIC
TAPE

NORMAL RETURN, DEVICE RELEASED

ERROR RETURN - A-REGISTER CONTAINS THE ERROR
CODE

ERROR, ILLEGAL PARAMETER IN THE DCB, DCNM

Using an outline parameter list, the above example would be

written as follows:

LDX PLS3
RELS (X)

PLS3 DAC *+1

DAC ERAD

RELEASE DEVICE

PARAMETER LIST POINTER TO X

RELEASE LOGICAL UNIT NO. 1 OF THE MAGNETIC
TAPE

NORMAL RETURN, DEVICE RELEASED.

ERROR RETURN - A-REGISTER CONTAINS THE ERROR
CODE

ERROR, ILLEGAL PARAMETER IN THE DCB, DCNM
PARAMETER LIST
POINTER TO PARAMETER LIST

DCB ADDRESS
ERROR RETURN ADDRESS

6-16 AR22

INPE

Input (INPS)

The INP$ function is used to initiate the transfer of a record from an

I/0 device into main memory.

FUNCTION ACTION

The INP$ action routine checks to determine if the specified device has
been previously reserved by a RSV$ function call; if not, the error return is
taken. Then, the parameters specified in the INPS$ parameter list and the de-
vice control block are checked. The error return is taken if any one of the
puarameters is illegal. The INP$ action routine then queues the input request
according to the priority level of the task which issued the INPS$ request,
initiates the input request if the specified device is not currently busy pro-
cessing another request, and returns to the calling program at the normal
return. Normally, the WIO$ function should be called immediately. However,
further user code may be executed, and additional physical I/0 requests made

before calling WIOS.

MACRO CALL FORMAT

Location Operation Operand

(symbo1l) INPS DCB address,
error return address,
buffer address,
range,
[mass memory segment number address],
[1/0 status block address] ,
[I/0 completion return address]
symboi‘— Optional. The symbolic location of the INPS$ macro instruc-
ion.

DCB address - The name of the device control block associated with
the input device.

error return address - The address to which control is returned if
an error is found in the INP$ parameter list, the specified
device control block parameters, or if the input device was
not previously reserved.

NOTE: Control does not return to the error return address
if an error occurs during the retrieval from the
input device. A user tests for retrieval error by
checking the I/O status block after control is re-
turned to the I/O completion return address.

(=)
¢
.
~1
el
s |
)

puffer address - The address of the first word of the buffer into
which the record is to be placed. 1In a 64K system, this
buffer may reside in the callers' A-bank or B-bank, or
partially in both as long as it does not cross from bank 1
to bank 2. In addition, the buffer address may be a logical
or a physical address. If a physical address is specified,
the sign bit of the range word must be set to indicate that
this is so. Only nonrestricted activities can specify a
physical address. 1If a restricted activity attempts to do
so, it will be aborted.

range - The number of words to be read, from a minimum of 1 to a
maximum of 4095. The number of words transferred into the
buffer will be determined by the expiration of the range
count or the end of record, whichever occurs first.

In a 64K system, the sign bit of the range word must be set
if the buffer address is specified as a physical rather
than a logical address.

mass memory segment number address - Optional. The address of a
word containing the number of the disk segment from which
record is to be read. This parameter is omitted for all
but disk devices.

1/0 status block address - Optional. The address of an 8-word
block used by the device driver to schedule the I/0 comple-
tion return to the user and to store the status information
as described in Appendix B. The I/O status block address
is in the X-register when control is returned to the user
program at the I/0 completion return address. If this param-
eter is omitted, the I/0 status block address specified in
the device control block is used. If this parameter is
present, it is used to replace the I/0 status block address
in the device control block and any subsequent I/0 call
using the same device control block uses the new I/0 status
block address.

NOTE: Updating of the I/O status block address in the
DCB is performed by the execution of the inline
macro expansion and not by the action routine.

I/0 completion return address - Optional. The address where con;rol
is to be returned after I/0 completion. If this parameter 1S
omitted, the I/O completion return address specified in the
device control block is used. If this parameter is present, it
is used to replace the 1/0 completion return address in the
device control block and any subsequent I/0 call using the same
device control block uses the new I/0 completion return address.

NOTE: Updating of the I/O completion return address in the
DCB is performed by the execution of the inline macro
expansion and not by the action routine.

NORMAI RETURN

Control is returned to the calling program at the instruction, following
the INP$ request, after the input operation has been initiated (and probably
before it has been completed). The calling program must wait for input com-

pletion by issuing a WIO$ function call.

6-18 AR22

I/O COMPLETION RETURN

After a WIO$ request has been completed, control is returned to the I/O
completion return address whether the record has been retrieved successfully
or unsuccessfully. The user must then test for input errors by checking the

I/0 status block (see I/0 status block error code in Appendix B).

ERROR RETURN

Control is returned to the error return address specified in the INP$
parameter list with the error code in the A-register when any of the following

errors is detected:

A-register

Contents
(Octal) Error Condition

1 The generic device type specified in the
device control block is not configured for
this system. '

3 The logical unit number specified in the
device control block is not configured for
this system.

4 The data mode specified in the device control
block is not in the range O to 4, or is not a
valid mode for the specified input device.

5 The number of words specified in the range
parameter is smaller than 1 or more than 4095,
or the I/0 buffer crosses the boundary be-
tween banks 1 and 2 (64K systems only).

10 The device was not previously reserved under
the user~ID specified in the device control
block. :

11 An input request was issued for an output only
device.

14 An input request was issued for a disabled
device.

15 The device was not reserved by the restricted
activity that issued the INP$ request.

32 The disk-resident driver for the specified de-
vice is not currently resident in main memory.

34 Requested executive function is not configured.

156 The input request for the disk cannot be accepted
because a mount is in progress on the requested
unit.

ACTION ROUTINE DETAILS
The following checks are made to determine if the input request is legal:.
1. A test is made to determine if the generic device type and the

logical unit number specified in the device control block have
been configured into the system.

2. A test is made to determine if the requested device is enabled.

6-19 AR22

3. A test is made to determine if the requested device
has been previously reserved by a RSV$ function call.

4. A test is made to determine if the user ID specified in the
device control block matches the ID for which the device was
reserved (private devices only).

5. A test is made to determine if the data mode specified in the
device control block is within the range from 0 to 4, and is a
valid mode for the specified device.

6. A test is made to determine if the range value specified in the
INP$ function call is within the limits from 1 to 4095.

7. A test is made to determine if the specified device is an input
device.

8. If the specified device is a disk, a test is made to determine
if a removable disk pack is not in the process of being mounted
on the requested unit.

9. If the activity is restricted, a test is made to determine if
. the specified device was reserved by the activity.

If the input request is not legal, control is returned to the error return
address specified in the INP§ parameter list with the error code in the A-
register. If the input request is legal, the input request is queued according
to the priority level of the task which issued the INP$ request. If the re-
quested device is currently busy processing another request, control is returned
to the calling program at the normal return address. If the requested device
is not currently busy, the input request is initiated, and control is returned
to the caller at the normal return. When the calling program receives control
at the normal return, a WIO$ request must be issued immediately if the calling
program requires sequential input. If nonsequential inpuf is desired, the
calling program continues processing to the point that the input completion is
required. At this point, a WIO$ request must be issued. Upon completion of
the requested input, the code specified by the I/0 completion return address
is scheduled. When the calling program receives control at the I/O completion
return address, the calling program must assume the responsibility of interro-
gating the I/0 status block to determine if the input request was successful.
Word 1 of the status block is zero if no error occurred. (See Appendix B for

the status information.)

OUTLINE PARAMETER LIST

Word Number Operation Operand
o DAC DCB address
1 DAC error return address
2 DAC buffer address-
3 DEC range
4 DAC [mass memory segment number address|

6-20 AR22

The parameters in the outline parameter list are the same as those
described above for the inline parameter list. If the INP$ call
is for a mass memory device, the segment number address must be
specified. If the call is not for a mass memory device, this
parameter should be omitted.

NOTE: If an outline parameter list is used and it is desired to
update the I/O status block address or the I/0 completion
return address in the DCB, the user must precede the INPS$
function call with the instructions to store the new I/0
status block address in the sixth word (word 5) of the DCB
or the new I/0 completion return address in the seventh
word (word 6) of the DCB.

Examples:

The examples below illustrate the use of the INP$ function to input
sequentially from magnetic tape. The call is sequential because the

- WIO$ function call is issued immediately following the input request.
The device control block, DCNM, is shown in the example given under
"Assign Device Control Block (DCB$)," and the RSV$ request is shown in
the example given under the description of the RSV$ function. The
buffer address is BFAD. The I/0 completion return address, RTAD is
overlaid and becomes NMAD, but the I/0 status block address, TBAD,
remains the same as in the DCB, since a new I/0 status block address
is not specified in the input request.

* INPUT A 60-WORD RECORD FROM MAGNETIC TAPE,
* LOGICAL UNIT NO. 1

INPS DCNM, ERAD ,BFAD,60, , ,NMAD INPUT A RECORD

WIOS PTBAD SEQUENTIAL, WAIT FOR COMPLETION OF INPUT
* I/0 COMPLETION RETURN
NMAD LDA TBAD+1 FETCH THE STATUS

SZE DID AN ERROR OCCUR?

JMP ERR YES, PROCESS ERROR

—_— : NO ERROR, PROCESS DATA

* ERROR RETURN - A-REGISTER CONTAINS THE ERROR
* " CODE

*

ERAD ——- ERROR, ILLEGAL PARAMETER IN THE INP$ PARAM-
* ETER LIST OR IN THE DCB, DCNM.

PTBAD DAC TBAD 1/0 STATUS BLOCK ADDRESS

BFAD BSZ 60 INPUT BUFFER

6-21 AR22

Using an outline parameter list, the above example would be written
as follows:

* & % *

* * *I

PTBAD

BFAD

PNAD
DCNM+6

PLS7
(X)
PTBAD

TBAD+1

ERR

*41

ERAD
BFAD
60

TBAD

60

INPUT A 60-WORD RECORD FROM MAGNETIC TAPE,
LOGICAL UNIT NO. 1
A-REGISTER SET TO DAC NMAD

STORE I/0 COMPLETION RETURN ADDRESS IN
THE DCB

POINTER TO PARAMETER LIST TO X

INPUT

SEQUENTIAL, WAIT FOR COMPLETION OF INPUT
I/0 COMPLETION RETURN

FETCH THE STATUS

DID AN ERROR OCCUR?

YES, PROCESS ERROR

NO ERROR, PROCESS DATA

ERROR RETURN - A-REGISTER CONTAINS THE ERROR
CODE

ERROR, ILLEGAL PARAMETER IN THE INP$
PARAMETER LIST OR IN THE DCB, DCNM

PARAMETER LIST

’
POINTER TO PARAMETER LIST
DCB ADDRESS
ERROR RETURN ADDRESS
BUFFER ADDRESS
RANGE

I/0 STATUS BLOCK ADDRESS
I/0 COMPLETION RETURN ADDRESS
INPUT BUFFER

6-22 AR22

OTP$

7N Output (OTPS)

The OTP$ function is used to initiate the transfer of a record from main

memory to an I/0 device.

FUNCTION ACTION

The OTP$ action routine checks to determine if the specified device has
Peen previously reserved by a RSVS$S request, and, if not, takes the error re-
tarn. Next, the parameters specified in the OTP$ parameter list and the device
control block are checked. OTP$ takes the error return if any of the param-
eters is illegal. The output request is then queued according to the priority
level of the task which issued the OTP$ function call, and is initiated if the
specified device is not currently busy processing another request, and control
returns to the calling program at the normal return. Normally, the WIO$ func-
tion should be called immediately. However, further user code may be executed,

and additional physical I/0 requests made before calling WIOS.

MACRO CALL FORMAT

Location Operation Operand

~ [symbol] OTP$ DCB address,
error return address,
buffer address,
range,
Dnass memory segment number addressJ,
[1/0 status block address],

[1/0 completion return address]

symbol - Optional. The symbolic location of the OTP$ macro instruction.

DCB address - The name of the device control block associated with
the output device.

error return address - The address to which control is returned if
an error is found in the OTP$ parameter list, the specified
device control block parameters, or if the output device was
not previously reserved.

NOTE: Control does not return to the error return address
if an error occurs during the transfer to the)
output device. A user must test for a transfer error
by checking the I/O status block after control is
returned to the I/O completion return address.

6-23 AR22

buffer address - The address of the first word o the huffer {romn
which the record is to be transferred. In & 64K system, this
buffer may reside in a caller's A- or B-bank or partially in

both as long as it does not cross from bank 1 to bank 2.

range - The number of words to be transferred, from a minimum of 1
to a maximum of 4095. The number of words transferred from o
the buffer will be determined by the expiration of the range
count or the end of record (see Appendix B).

In a 64K system, the sign bit of the range word must be set
if the buffer address is specified as a physical rather than
a logical address.

In addition, the buffer address may be a logical or a physical
address. If a physical address is specified, the sign bit of
the range word must be set to indicate that this is so. Only
nonrestricted activities may specify a physical address. If
a restricted activity attempts to do so, it will be aborted.

mass memory segment number address - Optional. The address of a
word containing the number of the disk segment into which
record is to be placed.

This parameter is omitted for all but disk devices.

I/0 status block address - Optional. The address of an 8-word block
used by the device driver to schedule the I/0 completion return
to the user and to store the status information as described in
Appendix B. The I/O status block address will be in the X-
register when control is returned to the user at the I/0 com-
pletion return address. If this parameter is omitted, the I/0
status block address specified in the device control block will
be used. If this parameter is present, it replaces the 1/0
status block address in the device control block and any sub-
sequent I/0 call using the same device control block uses the
new I/0 status block address. ~~

NOTE: Updating of the I/O status block address in the DCB —
is performed by the execution of the inline macro
expansion and not by the action routine.

I/0 completion return address - Optional. The address where control
is to be returned after I/0 completion.

If this parameter is omitted, the I/0 completion return address
specified in the device control block will be used. If this
parameter is present, it replaces the I/0 completion return
address in the device control block and any subsequent I/0 call
using the same device control block uses the new I/0 completion
return address.

NOTE: Updating of the I/0 completion return address in the

DCB is performed by the execution of the inline
macro expansion and not by the action routine.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the OTPS$ function call, after the output request has been initiated, and prob-
ably before it has been completed. The calling program must wait for output

completion by issuing a WIO$ function call.

1/0 COMPLETION RETURN

After a WIOS request has been completed, control will be returned to the

I/0 completion return address whether the record has been transferred successfully

6-24 AR22

or unsuccessfully. The user must then test for output errors by checking the

I/0 status block (see I/O status block error code in Appendix B).

7~ ERROR RETURN

Control is returned to the error return address specified in the OTPS

parameter list with the error code in the A-register when any of the following

errors is detected:

A-register

Contents
(Octal) Error Message
1 The generic device type specified in the

device control block is not configured for
this system.

3 The logical unit number specified in the
device control block is not configured for
this system.

4 The data mode specified in the device control
block is not in the range 0 to 4, or is not a
valid mode for the specified output device.

5 The number of words specified in the range
parameter is less than 1 or more than 4095,
or the buffer crosses the boundary between
banks 1 and 2 (64K systems only).

10 The device was not previously reserved under
the user ID specified in the device control
block.

12 An output request was issued for an input only
device.

14 An output request was issued for a disabled
device.

15 The device was not reserved by the restricted
activity which issued the OTP$ request.

32 The disk-resident driver for the specified
device is not currently resident in main
memory.

34 Requested executive function is not configured.

153 The mass memory segment number specified in
the parameter list is illegal.

156 The output request for the disk cannot be accepted
because a mount is in progress on the requested
unit.

ACTION ROUTINE DETAILS

The following checks are made to determine if the output request is legal:

1.

A test is made to determine if the generic device type and the
logical unit number specified in the device contrcl bleck have
been configured into the system.

t is made to determine if the requested device is enabled.

A tes
Ta

A test is made to determine if the requested device has been
previously reserved by a RSV$ request.

6-25 AR22Z

4. A test is made to determine if the user ID specified in the

device control block matches the ID for whic! the device was
reserved (private devices only).

5. A test is made to determine if the data mode specified in the
device control block is within the range from 0 to 4, and is
a valid mode for the specified device.

6. A test is made to determine if the range value specified in the
OoTP$ parameter list is within the limits from 1 to 4095 and is no

greater than the segment length if the specified device is a disk.

7. A test is made to determine if the specified device 1is an output
device.
8. 1If the specified device is a disk, a test is made to determine

if a removable disk pack is not in the process of being mounted
on the requested unit, and a test is made to determine if the
mass memory segment number specified is within the user area on
a labeled disk volume.

9. If the activity is restricted, a test is made to determine if
the specified device was reserved by the activity.

If the output request is not legal, control is returned to . the error
return address specified in the OTP$ parameter list with the error code in the
A-register. If the output request is legal, the output request is queued
according to the priority level of the task which issued the OTP$ request. If
the requested device is currently busy processing another request, control is
returned to the calling program at the normal return. If the requested device
is not currently busy, the output request is initiated, and control is returned
to the calling program at the normal return. When the calling program receives
control at the normal return, a WIO$ request must be issued immediately if the
calling program desires'sequential output. If nonsequential output is desired,
the calling program continues processing to the point that the output comple-
tion is required. At this point, a WIO$ request must be issued.

Upon completion of the requested output, the code specified by the I/0
completion return address will be scheduled. When the calling program re-
ceives control at the I/O completion return address, the calling program must
assume the responsibility of interrogating the I/0 status block to determine
if the output request was successful. Word 1 of the status block will be zero

if no error occurred. (See Appendix B for the status information.)

OUTLINE PARAMETER LIST

Word Number Operation Operand
0 DAC DCB address
1 DAC error return address
2 DAC buffer address
3 DEC range
4 DAC [mass memory segment number address |

6-26 AR22

Parameters in the outline parameter list are the same as those
described above for the inline parameter list. If the OTPS$

call is for a mass storage device, the segment number address
must be specified. If the call is not for a mass storage device,
this parameter should be omitted.

NOTE: If an outline parameter list is used and it is desired
to update the I/0O status block address or the I/O comple-
tion return address in the DCB, the user must precede the
OTPS$ function call with the instructions to store the new
1/0 status block address in the sixth word (word 5) of the
DCB or the new I/0 completion return address in the seventh
word (word 6) of the DCB.

Examples:

The examples below illustrate the use of the OTPS$ function to
send multiple files as output to the magnetic tape nonsequen-
tially. The calls are nonsequential because processing of data
is done after the output request is issued. The device control
block, DCNM, and the RSV$ request are shown in the examples
given under "Assign Device Control Block (DCBS$)" and RSVS$
function, respectively. The I/0 status block address and the
I/0 completion return address are changed in the DCB for each
output request.

* OUTPUT MULTIPLE 60-WORD RECORDS TO
* MAGNETIC TAPE, LOGICAL UNIT NO. 1,
: NONSEQUENTIALLY

JST STB1 SET UP BUF1 FOR OUTPUT
RETT OTPS DCNM, ERA ,BUF1,60,,STA1,RET1 OUTPUT BUF1l

JsT STB2 SET UP BUF2 FOR OUTPUT

WIOS$ PST1 WAIT FOR OUTPUT COMPLETION OF BUF1
RET1 LDA 1,1 OUTPUT OF BUF1 COMPLETE, FETCH STATUS,
* X CONTAINS POINTER TO STAl

SZE DID AN ERROR OCCUR?

JMP ERR YES, PROCESS ERROR

IRS CNTR HAS ALL DATA BEEN OUTPUT?

SKP NO

JMP FNSH YES, ALL DATA OUTPUT

OTP$ DCNM, ERA,BUF2,60, ,STA2,RET2 OUTPUT BUF2

JST STB1 SETUP BUF1 FOR OUTPUT

WIOS$ PST2 WAIT FOR OUTPUT COMPLETION OF BUF2
RET2 I1DA 1,1 OUTPUT OF BUF2 COMPLETE, FETCH STATUS,
* X CONTAINS POINTER TO STA2

SZE DID AN ERROR OCCUR?

JMP ERR YES, PROCESS ERROR)

IRS CNTR HAS ALL DATA BEEN OUTPUT?

JMP RETT NC, GO TO OUTPUT BUF1
FNSH -——- DATA OUTPUT COMPLETE
*
* ERROR RETURN - A-REGISTER CONTAINS ERROR
* CODE

6-27 AR22

ERA
*

PST1
PST2
STAl
STA2
BUF1
BUF2

DAC
DAC
BS5Z
B5SZ
BSz
BSZ

STAl
STA2
8

8

60
60

ERROR, ILLEGAL PARANM TER IN THE OTPS
PARAMETER LIST OR IN THE DCB, DCNM

1/0 STATUS BLOCK ADDRESS
1/0 STATUS BLOCK ADDRESS
1/0 STATUS BLOCK

I/0 STATUS BLOCK

OUTPUT BUFFER

OUTPUT BUFFER

Using ‘an outline parameter list, the above example would be
written as follows:

* % * *

RETT

RET1

JsT

STA

STB1
PST1
DCNM+5

PRT1
DCNM+6

PLS8
(X)
STB2
PST1
1.1

ERR
CNTR

FNSH
PST2
DCNM+5
PRT2
DCNM+6

PLS9
(x)

STB1
PST2

OUTPUT MULTIPLE 60-WORD RECORDS TO
MAGNETIC TAPE, LOGICAL UNIT NO. 1,
NONSEQUENTIALLY

SET UP BUF1 FOR OUTPUT

A-REGISTER SET TO DAC STAl

STORE I/0 STATUS BLOCK ADDRESS IN THE
DCB

A-REGISTER SET TO DAC RET1

STORE I/0 COMPLETION RETURN ADDRESS IN
THE DCB

POINTER TO PARAMETER LIST TO X
OUTPUT BUF1

SET UP BUF2 FOR OUTPUT

WAIT FOR OUTPUT COMPLETION OF BUF1

OUTPUT OF BUF1 COMPLETE, FETCH STATUS, X
CONTAINS A POINTER TO STAl

DID AN ERROR OCCUR?

YES, PROCESS ERROR

HAS ALL DATA BEEN OUTPUT?

NO

YES, ALL DATA OUTPUT

A-REGISTER SET TO DAC STA2

STORE I/O STATUS BLOCK ADDRESS IN THE DCB
A-REGISTER SET TO DAC RET2

STORE I/0 COMPLETION RETURN ADDRESS IN
THE DCB

POINTER TO PARAMETER LIST TDX
OUTPUT BUF2

SET UP BUF1 FOR OUTPUT

WAIT FOR COMPLETION OF BUF2

6-28 AR22

RET2

FNSH

PLS8

PLS9

PST1
PRT1
STAl
STA2
PST2
PRT2
BUF1
BUF2

DAC
DAC

DEC
DAC
DAC
BSz
BSZ
DAC
DAC
BSZ
BSZ

ERR
CNTR
RETT

*+1

ERA
BUF1
60

*+l

ERA
BUF2
60
STAl
RET1

STA2
RET2
60
60

OUTPUT OF BUF2 COMPLETE, FETCH STATUS,

X CONTAINS A POINTER TO STA2
DID AN ERROR OCCUR?

YES,

PROCESS ERROR

HAS ALL DATA BEEN OUTPUT?
NO, GO TO OUTPUT BUF1l
DATA OUTPUT COMPLETE

ERROR RETURN

CODE

- A-REGISTER CONTAINS ERROR

ERROR, ILLEGAL PARAMETER IN THE OTPS$ MACRO

PARAMETER LIST OR IN THE DCB, DCNM

PARAMETER LIST FOR BUF1 OUTPUT

POINTER TO PARAMETER LIST
DCB ADDRESS

ERRO
BUFF

R RETURN ADDRESS
ER ADDRESS

RANGE

PARAMETER LIST FOR BUF2 OUTPUT

POIN

TER TO PARAMETER LIST

DCB ADDRESS
ERROR RETURN ADDRESS
BUFFER ADDRESS

RANG
1,/0
1/0
1/0
1/0
1/0
/0

E

STATUS BLOCK ADDRESS
COMPLETION RETURN ADDRESS
STATUS BLOCK

STATUS BLOCK

STATUS BLOCK ADDRESS
COMPLETION RETURN ADDRESS

OUTPUT BUFFER
OUTPUT BUFFER

AR22

The example below illustrates the use of the INPS, OTPS and EOFS$ functions
to copy an ASCII file from one magnetic tape to another, using nonsequential,
parallel I/O. This technique is faster than sequential I/O because the 1/0
operations are performed on both devices simultaneously. The time saved by
the technique is at a maximum when the data processing speeds of the two

peripheral devices are equal.

The program uses two I/0 buffers. After initially inputting the first
record of the file into the first buffer, it outputs this record and simultan-
eously inputs the second record into the other buffer. It then alternates
the buffer addresses and repeats the process until end of file is detected.
The same set of I/0 complete code services all I/O operations, including the
writing of an end-of-file mark to the output tape. The program keeps a count
(REQCNT) of the number of I/0 requests for which a WIO$ call is still pending;
even if processing is interrupted by an error, the program must still issue a

WIO$ call for all such outstanding I/0 requests before terminating.

Outline parameter lists are used for all function calls except WIOS. This
is necessary for the INP$ and OTP$ calls because the program has to alter the
contents of the parameter lists when swapping buffer addresses. Note also that
the EOF$ (write end-of-file) call can use the OTP$ parameter list. (The EOF$

function is described next in this manual.)

NOTE: To derive maximum processing speed from this parallel I/0
technique, the two magnetic tape drives used should be
attached to two different hardware controllers, since
I/0 operations on two different magnetic tape drives
attached to the same controller are (with the exception
of a Rewind operation) performed sequentially rather
than in parallel.

*

COPY 60-WORD ASCII RECORDS FROM MAGNETIC TAPE LOGICAL UNIT 0 TO
MAGNETIC TAPE LOGICAL UNIT 4, USING NONSEQUENTIAL, INTERLEAVED I/0

*

* INITIALIZE

CRA

STA REQCNT I/0 REQUEST PENDING COUNT
STA ENFLG END OF PROCESSING FLAG
STA EOFFLG END-OF-FILE READ FLAG

*

INPUT RECORD FROM MAGNETIC TAPE LOGICAL UNIT 0

6-30 AR22

*

INPUT LDX

INPS*
*

* WAIT FOR I/O
*

WAIT
*

WAIT2
*

* 1/0 COMPLETION
*
I0COMP LDA

SUB

STA

IRS

WIOS¥*

LDA
SNZ
JMP

ANA

SZE

JMP

IRS
*

* DECIDE WHAT TO
*

TRC LDA
SZE

JMP

LDA
SZE
JMP

LDA
SZE

JMP
*

PINPPL
(X)

REQCNT

POINT TO INP$S PARAMETER LIST
INPUT

TALLY I/0 REQUEST COUNT

WAIT FOR I/0

RETURN FOR ALL REQUESTS

REQCNT
REQCNT
1,1

TRC
='177767

IOERR
EOFFLG

DO NEXT
REQCNT
WAIT2

ENDFLG
WRAPUP
EOFFLG

EOF

OPERATION COMPLETE; DECREMENT COUNT

WORD 1 OF STATUS BLOCK
WAS THERE AN ERROR?
NO, ALL OK; GO ON

DISCARD END-OF-FILE BIT
WAS IT END OF FILE AND NO OTHER ERROR?
NO, IT WAS AN ERROR - HANDLE IT

MARK END OF FILE READ)

I/0 REQUEST PENDING COUNT
IS THERE STILL A REQUEST OUTSTANDING?
YES - WAIT FOR IT

END OF PROCESSING FLAG
HAVE WE FINISHED PROCESSING?
YES - TERMINATE PROGRAM

END-OF-FILE FLAG
HAVE WE READ END OF FILE?
YES - WRITE END OF FILE ON OUTPUT TAPE

* SWAP BUFFERS, RE-OUTPUT THE BUFFER JUST INPUT, AND INPUT TO
* THE OTHER BUFFER

*

LDA
IMA
STA

LDX
OTPS*

IRS
JMP

INBUF
OUTBUF
INBUF

POTPPL
(X)

REQCNT
INPUT

CURRENT INPUT BUFFER
SWAP WITH OUTPUT BUFFER

POINT TO OTP$ PARAMETER LIST
OUTPUT

TALLY REQUEST COUNT
INPUT TO OTHER BUFFER

* WRITE END OF FILE TO OUTPUT TAPE

EOF IRS
*

LDX
EOFS$*

JMP

ENDFILG

PEOFPL
(x)

WAIT

TERMINATE PROCESSING NEXT TIME AROUND

POINT TO EOF$ PARAMETER LIST
WRITE END OF FILE

WAIT FOR IT

AR22

* HANDLE ERROR RETURNS FROM SYSTEM FUNCTIONS

*

SYSERR IRS ENDFLG TERMINATE PROCESSING NEXT TIME AROUND
JMP TRC WAIT FOR OUTSTANDING I/O (IF ANY)
* PROCESS ERROR

* HANDLE I/0 DEVICE ERRORS

*

IOERR IRS ENDFLG TERMINATE PROCESSING NEXT TIME AROUND
PROCESS ERROR

JMP TRC WAIT FOR OUTSTANDING I/O (IF ANY)
*

* TERMINATE PROCESSING
*

WRAPUP ----

*

* CONSTANTS AND VARIABLES
*

REQCNT BSZ 1 I/0 REQUEST PENDING COUNT
EOFFLG BSZ 1 END-OF-FILE READ FLAG
ENDFLG BS2 1 END OF PROCESSING FLAG
*
*

FIN LITERALS

*

* QUTLINE PARAMETER LIST FOR INPUT CALL
*

PINPPL DAC *+1 POINTER TO INP$ PARAMETER LIST
DAC INPDCB POINTER TO DCB '
DAC SYSERR ERROR RETURN

INBUF DAC BUF1 CURRENT INPUT BUFFER ADDRESS
DEC 60 RANGE

*

* QUTLINE PARAMETER LIST FOR OUTPUT AND WRITE END-OF-FILE CALLS
*

POTPPL DAC *+1 POINTER TO OTP$ PARAMETER LIST
DAC OTPDCB POINTER TO DCB
DAC SYSERR ERROR RETURN
OUTBUF DAC BUF2 CURRENT OUTPUT BUFFER ADDRESS
DEC 60 RANGE
*
PEOFPL EQU POTPPL EOF$ SHARES PARAMETER LIST WITH OTP$S

*

* DCB'S, STATUS BLOCKS AND BUFFERS
*

INPDCB DCBS$* 10,0,0,'125252,ISTAT, IOCOMP

*

OTPDCB DCBS* 10,4,0,'125252,0STAT, IOCOMP

*

ISTAT BSZ 8 STATUS BLOCK FOR INPUT
OSTAT BSZ * STATUS BLOCK FOR OUTPUT
*

BUF BSZ 60 FIRST BUFFER

BUF2 BSZ 60 SECOND BUFFER

6-32 AR22

EOFS

End of File (EOFS$)

The EOFS$ function is used to initiate the writing of an end-of-file record

on the specified device.

FUNCTION ACTION

The EOF$ action routine checks to determine if the specified device has
been previously reserved by a RSV$ request; if the device has not been reserved,
the error return is taken. Next, the parameters specified in the device con-
trol block are checked and the error return taken if any of the parameters is
illegal. Then, the EOF$ request is queued according to the priority level of
the task which issued the EOF$ request, and is initiated if the device is not
currently busy processing another request. Control returns to the calling pro-
gram at the normal return address. Normally, the WIO$ function should be
called immediately. However, further user code may be executed, and additional

physical I/0 requests made before calling WIOS.

MACRO CALL FORMAT

Location Operation Operand

[symbo1] EOF$ DCB address,
error return address,
(1/0 status block address],
[I/0 completion return address]
symbol - Optional. The symbolic location of the EOF$ macro instruc-
tion. '

DCB address - The name of the device control block associated with
the device.

error return address - The address to which control is returned if an
error is found in the specified device control block parameters
or if the specified device was not previously reserved.

NOTE: Control does not return to the error return address
if an error occurs during the writing of the end of
file. The user must test for such an error by
checking the I/0 status block after control is
returned to the I/0 completion return address.

6-33 AR22

1/0 status block address - Optional. The address of an 8-word
block used by the device driver to schedule -he I/O0 com-
pletion return to the user and to store the status infor-
mation as described in Appendix B. The I/0O status block
address will be in the X-register when contrecl is returned
to the user at the I/O completion return address. If this
parameter is omitted, the I/O status block address speci-
fied in the device control block is used. If this param-
eter is present, it replaces the I/O status block address
in the device control block and any subsequent I/O call
using the same device control block uses the new I/0 status
block address.

. NOTE: Updating of the 1/0 status block address in the DCB
is performed by the execution of the inline macro
expansion and not by the action routine.

I/0 completion return address - Optional. The address where control
is to be returned after I/0 completion. If this parameter is
omitted, the I/O completion return address specified in the
device control block is used. If this parameter is present, it
replaces the I/0 completion return address in the device control
block and any subsequent I/0 call using the same device control
block uses the new I/0 completion return address.

Updating of the I1/0 completion return address in the
DCB is performed by the execution of the inline
macro expansion and not by the action routine.

NOTE

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the EOF$ request, after the writing of the end of file has been initiated, and
probably before it has been completed. The calling program must wait for the
completion of the writing of the end of file by issuing a WIO$ function call.

I/0 COMPLETION RETURN

After a WIO$ request has been completed, control is returned to the I/O
completion return address whether the end of file has been written successfully
or unsuccessfully. The user must then test for an error which occurred during
the writing of the end of file by checking the I/0O status block (see I/0 Status
Block Error Code in Appendix B).

ERROR RETURN

Control is returned to the error return address specified in the EOFS$
parameter list with the error code in the A-register when any of the following

errors is detected:

A-register

Contents
(Octal) Error Condition
1 The generic device type specified in the

device control block is not configured for
this system.

6-34 AR22

A-register

Contents)
(Octal) Error Condition

3 The logical unit number specified in the
device control block is not configured for
this system.

7 The EOF$ request was issued for a device
other than magnetic tape, the high-speed paper
tape punch, cassette tape, card punch, or the
ASR paper tape punch.

10 The device has not been previously reserved
under the user ID specified in the device
control block.

14 An EOF$ request was issued for a disabled
device.

15 The device was not reserved by the restricted
activity which issued the EOF$ request.

32 The disk-resident driver for the specified
device is not currently resident in main
memory.

34 Requested executive function is not configured.

MACRO ROUTINE ACTION DETAILS

The following checks are made to determine if the EOF$ request is legal:

1. A test is made to determine if the generic device type and the
logical unit number specified in the device control block have
—~ been configured into the system.

2. A test is made to determine if the specified device is enabled.

3. A test is made to determine if the specified device has been
previously reserved by a RSV$ function call.

4. A test is made to determine if the user ID specified in the
device control block matches the ID for which the device was
reserved.

5. A test is made to determine if the requested device is magnetic
tape, the high-speed paper tape punch, cassette tape, card punch,
or the ASR paper tape punch.

6. If the activitv is restricted, a test is made to determined if
the specified device was reserved by the activity.

If the EOF$ request is not legal, control is returned to the error return
address specified in the EOF$ parameter list with the error code in the A-
register. If the EOF$ request is legal, the EOF$ request is queued according to
the priority level of the task which issued the EOF$ request. Tf the specified
device is currently busy processing another request, control s returned to the
calling program at the normal return. If the specified device is not currently
busy, the EOF$ request is initiated, and controi is returned to the calling pro-
gram at the normal return. When the calling program receives control at the
normal return, a WIOS$ request must be issued immediately if the ~53l1llir >y program

~~desires sequential I/0. If nonsequential I/0 is desired, the calling pregram

continues processing to the point that the end-of-file completion is reguired.

6-35 AR22

At this point, a WIO$ request must be issued. Upon completion of the end of
file, the code specified by the I/O completion return address is scheduled.
When the calling program receives control at the I/0 completion return address,
the calling program must assume the responsibility of interrogating the 1/0
status block to determine if the EOF$ request was successful.

Word 1 of the status block is zero if no error occurred. (See Appendix B

for the status information.)

OUTLINE PARAMETER LIST

Word Number Operation Operand
0 DAC DCB address
1 DAC error return address

pParameters in the outline parameter list are the same as those
described above for the inline parameter list.

NOTE: If an outline parameter list is used and it is desired
to update the I/O status block address or the I/O0 com-
pletion return address in the DCB, the user must pre-
cede the function call with the instructions to store
the new I/0 status block address in the sixth word
(word 5) of the DCB or the new I/0 completion return
address in the seventh word (word 6) of the DCB.

Examples:

The following examples illustrate the use of the EQF$ function
to write an end-of-file record on a magnetic tape. The device
control block, DCNM, and the RSV$ request, which must be exe-
cuted prior to the request to write an end of file, have been
illustrated previously in the DCB$ example. The EOF$ request is
sequential, and the I/0 status block address and the I/0 comple-
tion return address remain as shown in DCNM, since they are not
specified in the EOF$ request.

WRITE END OF FILE ON MAGNETIC TAPE

EOF$ DCNM, EFER WRITE EOF
* WIOS SEQUENTIAL, WAIT FOR WRITING OF EOF TO
* BE COMPLETED
RTAD LDA TBAD+1 EOF WRITTEN, FETCH STATUS

SZE DID AN ERROR OCCUR?

JMP ERR YES, PROCESS ERROR

_— NO ERROR, CONTINUE

ERROR RETURN - A-REGISTER CONTAINS THE

* ERROR CODE
EFER --- ERRORS, ILLEGAL PARAMETER IN THE DCB,
DCNM

6-36 AR22

Using an outline parameter list, the above examples would be written

as follows:

LDX PL13
EOFS (X)
* WIOS

RTAD TLDA TBAD+1

SZE
JMP ERR
*
*
*
*
EFER ---
*
*
*
*
PL13 DAC *+1

DAC DCNM
DAC EFER

WRITE END OF FILE ON MAGNETIC TAPE

POINTER TO PARAMETER LIST TO X

WRITE EOF

SEQUENTIAL, WAIT FOR WRITING OF EOF TO
BE COMPLETED

I/0 COMPLETION RETURN, FETCH STATUS
DID AN ERROR OCCUR?
YES, PROCESS ERROR
NO ERROR, CONTINUE

ERROR RETUPN - A-REGISTER CONTAINS THE
ERROR CODE

ERROR, ILLEGAL: PARAMETER IN THE DCB,
DCNM

PARAMETER LIST
POINTER TO PARAMETER LIST

DCB ADDRESS
ERROR RETURN ADDRESS

AR22

SPFE

Space File (SPFS)

The SPF$ function is used to initiate the spacing past one or more file

marks on a maghetic tape or cassette tape.

FUNCTION ACTION

The SPF$ action routine checks to determine if the specified device has
been previously reserved by a RSVS$ function call. If the device has not been
reserved, the error return is taken. Next, the parameters specified in the
SPF$ parameter list and the device control block are checked, and the error
return is taken if any one of the parameters is illegal. If legal, the space
file request is gqueued according to the priority level of the task which is-
sued the SPF$ request, the space file request is initiated if the specified de-
vice is not currently busy processing another request, and return is made to
the calling program at the normal return. Normally, the WIOS$ function should
be called immediately. However, further user code may be executed and addi-

tional physical I/O requests made before calling WIOS.

The SPF$ function causes the specified number of file marks to be passed,
in either the forward or reverse direction. Thus, after spacing backwards, the
tape is positioned suych that input operation would encounter a file mark im-
mediately. To position a tape at the beginning of a file which has been passed
on the tape, two SPF$ requests must be issued: one to move the tape backwards,

and one forwards to position the tape on the proper side of the file mark.

MACRO CALL FORMAT

Location Operation operand

[symbol] SPF$ DCB address,
error return address,
number of files address,
[1/0 status block address],
[1/0 completion return address]
symboi'- Optional. The symbolic location of the SPF$ macro instruc-
ion.

DCB address - The name of the device control block associated with
the space file device.

6-38 AR22

error return address - The address to which control is returned if an
error 1s found in the SPF$ parameter list, the specified device
control block parameters, or if the specified device was not pre-
viously reserved.

NOTE: Control does not return to the error return address

‘ if an error occurs during the spacing of a file.
The user must test for such an error by checking
the I/0 status block after control is returned to
the I/0 completion return address.

number of files address - The address of a word containing the number
of files to be spaced. A positive number indicates forward
spacing, and a negative number indicates backward spacing.

NOTE: Backward spacing is not allowed for tape cassette
files.

I/0 status block address - Optional. The address of an 8-word I/0
status block used by the device driver to schedule the I/0
completion return to the user and to store the status informa-
tion as described in Appendix B. The I/O status block address
will be in the X-register when control is returned to the user
at the I/0 completion return address. If this parameter is
omitted, the I/0 status block address specified in the device
control block is used. If this parameter is present, it is
used to replace the I/O status blo.k address in the device
control block and any subsequent I/O call using the same device
control block uses the new I/0 status block address.

NOTE: Updating of the I/O status block address in the DCB
is performed by the execution of the inline macro
expansion and not by the action routine.

I/0 completion return address - Optional., The address to which
control is returned after 1/C completion.

If this parameter is omitted, the I/0 completion return address
specified in the device control block is used. If this param-
eter is present, it is used to replace the I/0 completion return
address in the device control block and any subsequent I/0 call
using the same device control block uses the new I/0 completion
return address.

NOTE: Updating of the I/0O completion return address in the
DCB is performed by the execution of the inline
macro expansion and not by the action routine.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the SPF$ request, after the spacing of the file has been initiated, and prob-
ably before it has been completed. The calling program must wait for space
file completion by issuing a WIO$ function call.

I/0 COMPLETION RETURN

After a WIO$ request has been completed, control is returned to the I/O
completion return address whether the file(s) has been spaced successfully or
unsuccessfully. The user must then test for space file errors by checkine the

I/0 status block (see I/0 status block error code in Appendix E).

6-39 AR22

ERROR RETURN

Control is returned to the error return address specified in the SPF$

parameter list with the error code in the A-register when any of the following

errors is detected:

A-register -

Contents
(Octal) Error Condition

1 The generic device type specified in the
device control block is not configured for
this system.

3 The logical unit number specified in the
device control block is not configured for
this system.

6 The number of files to be spaced is illegal.

7 The space file request was issued for a device
other than magnetic tape or cassette tape.

10 The device was not previously reserved under
the user ID specified in the device control
block.

14 A space file request was issued for a disabled
device.

15 The device was not reserved by the restricted
activity which issued the SPF$ request.

32 The disk-resident driver for the specified device
is not currently resident in main memory.

34 The requested system function is not configured.

MACRO ROUTINE ACTION DETAILS

The following checks are made to determine if the SPF$ request is legal:

1.

A test is made to determine if the generic device type and the
logical unit number specified in the device control block have
been configured into the system.

A test is made to determine if the specified device is enabled.

A test is made to determine if the specified device has been
previously reserved by a RSVS$ function call.

A test is made to determine if the user ID specified in the
device control block matches the iD for which the device was
reserved.

A test is made to determine if the specified device is magnetic
tape or cassette tape.

A test is made to determine if the number of files to be spaced
is legal. The number of files is illegal if zero for magnetic
tape or if zero or negative for cassette tape.

If the activity is restricted, a test is made to determine if
the specified device was reserved by the activity.

6-40 AR22

If the SPF$ request is not legal, control is returned to the error return
address specified in the SPF$ parameter list with the error code in the A-
register. If the SPF$ request is legal, the SPF$ request is queued according to
the priority level of the task which issued the SPF$ request. If the specified
device is currently busy processing another request, control is returned to the
calling program at the normal return. If the specified device is not currently
busy, the SPF$ request is initiated, and control is returned to the calling pro-
gram at the normal return. When the calling program receives control at the
normal return, a WIO$ request must be issued immediately if the calling program
desires sequential I/0. If nonsequential I/0 is desired, the calling program
continues processing to the point that the space file completion is required.

At this point, a WIOS$ request must be issued. Upon completion of the space file,
the code specified by the I/0 completion return address is scheduled. When the
caliing program receives control at the I/0 completion return address, the
calling program must assume the responsibility of interrogating the I/0 status

block to determine if the SPF$ request was successful.

Word 1 of the status block contains an 8 if no error occurred. (See

Appendix B for the status information.)

OUTLINE PARAMETER LIST

Word Number Operation Operand
0 DAC DCB address
DAC error return address
2 DAC number of files address

Parameters in the outline parameter list are the same as those
described above for the inline parameter list.

NOTE: If an outline parameter list is used and it is desired to
update the I/O status block address or the I/0 completion
return address in the DCB, the user must precede the SPF$
function call with the instructions to store the new I/0
status block address in the sixth word (word 5) of the DCB
or the new I/0 completion return address in the seventh
word (word 6) of the DCB.

Examples:

The following examples illustrate the use of the SPF$ function to
forward space five files on a magentic tape. The device control
block, DCNM, and the RSV$ request, which must be executed prior

to the forward space, have been illustrated previously in the DCB$
example. The I/0 status block address and the I/0 completion re-
turn address are not referenced in the SPF$ function call, so they
remain as shown in DCNM.

6-41 AR22

SPF$
WIOS

RTAD LDA
CAS
JMP
SKP
JMP

NOERR ----

*

*

*

ERSP ---

*

EOF ocCT

P5 DEC

DCNM, ERSP, P5

FORWARD SPACE 5 FILES

FORWARD SPACE

SEQUENTIAL, WAIT FOR SPACE FILE COMPLETION
FORWARD SPACE COMPLETED, FETCH STATUS

DID AN ERROR OCCUR?

YES, PROCESS ERROR

NO ERROR, CONTINUE

YES, PROCESS ERROR

ERROR RETURN - A-REGISTER CONTAINS THE
ERROR CODE

ERROR, ILLEGAL PARAMETER IN THE SPF$ PARAMETER
LIST OR IN THE DCB, DCNM

I/0 STATUS BLOCK INDICATOR FOR END OF FILE
NUMBER OF FILES TO BE SPACED FORWARD

Using an outline parameter list, the above example would be written

as follows:

SPF$
WIOS
RTAD LDA
CAS
JMP

JMP
NOERR ----

FORWARD SPACE 5 FILES

POINTER TO PARAMETER LIST TO X

FORWARD SPACE FILES

SEQUENTIAL, WAIT FOR SPACE FILE COMPLETION
FORWARD SPACE COMPLETED, FETCH STATUS

DID AN ERROR OCCUR?

YES, PROCESS ERROR

NO ERROR, CONTINUE

YES, PROCESS ERROR

ERROR RETURN - A-REGISTER CONTAINS THE
ERROR CODE

ERROR, ILLEGAL PARAMETER IN THE SPF$ PARAMETER
LIST OR IN THE DCB, DCNM

PARAMETER LIST

6-42 AR22

PL11

EOF
P5

DAC
DAC
DAC
DAC

ocT
DEC

*+1
FCNM
ERSP
P5

10

POINTER TO PARAMETER LIST
DCB ADDRESS

ERROR RETURN ADDRESS
NUMBER OF FILES ADDRESS

I/0 STATUS BLOCK INDICATOR FOR END OF FILE

NUMBER OF FILES TO BE SPACED FORWARD

AR22

SPR$

Space Record (SPRS)

The SPR$ function is used to initiate the spacing of one or more records

on a magnetic tape or cassette tape.

FUNCTION ACTION

The' SPR$ action routine checks to determine if the specified device has
been previously reserved by a RSVS$ request; if the device has not been re-
served, the error return is taken. Otherwise, the parameters specified in the
SPR$ parameter list and the device control block are checked, and the error
return is taken if any of the parameters is illegal. If legal, the SPR$ request
is queued according to the priority of the task which issued the SPR$ request.
The SPR$ request is initiated if the specified device is not currently busy
processing another request, and the normal return is taken. Normally, the WIOS$
function should be called immediately. However, further user code may be ex-

ecuted, and additional physical 1I/0 requests made before calling WIOS.

MACRO CALL FORMAT

Location Operation Operand

[symbol] SPR$ DCB address,
error return addresé,
number of records address.
[1/0 status block address],
[1/0 completion return address_

symbol - Optional. The symbolic location of the SPR$ macro instruc-
tion.

DCB address - The name of the device control block associated with
the space record device.

error return address - The address to which control is returned if
an error is found in the SPR$ parameter list, the specified

device control block parameters, Or if the specified device
was not previously reserved.

NOTE: Control does not return to the error return address
if an error occurs during the spacing of a record.
A user must test for such an error by checking the
1/0 status block after control is returned to the
I/0 completion return address.

number of records address - The address of a word containing the
number of records to be spaced. A positive number indicates
forward spacing, and a negative number indicates backward
spacing.

NOTE: Backward spacing is not allowed for files on
cassette tape.

6-44 AR22

I/0 status block address - Optional. The address of an 8-word
block used by the device driver to schedule the I/0 com-
pletion return to the user and to store the status infor-
mation as described in Appendix B. The I/O status block
address will be in the X-register when control is returned
to the user program at the I/0 completion return address.
If this parameter is omitted, the I/O status block address
specified in the device control block is used. If this
parameter is present, it replaces the I/0 status block
address in the device control block and any subsequent I/0
call using the same device control block uses the new I/0O
status block address.

NOTE: Updating of the I/0O status block address in the
DCB is performed by the execution of the inline
macro expansion and not by the action routine.

1/0 completion return address - Optional. The address where
control is to be returned after I/O completion.

If this parameter is omitted, the I/O completion return
address specified in the device control block is used.
If this parameter is present, it replaces the I/0 com-
pletion return address in the device control block and
any subsequent I/0 call using the same device control
block uses the new I/0 completion return address.

NOTE: Updating of the I/0 completion return address in
the DCB is performed by the execution of the inline
macro expansion and not by the action routine.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the SPR$ request, after the spacing of the record has been initiated, and
probably before it has been completed. The calling program must wait for space

record completion by issuing a WIO$ function call.

I/0 COMPLETION RETURN

After a WIOS request has been completed, control is returned to the I/0
completion return address whether the record(s) has been spaced successfully or
unsuccessfully. The user must then test for space record errors by checking
the I/0 status block (see I/O status block error code in Appendix B).

ERROR RETURN

Control is returned to the error return address specified in the SPR$
parameter list with the error code in the A-register when any of the following
errors is detected:

A-register
Contents
(Octal) Error Condition
1 The generic device type specified in the
device control block is not configured for
this system.
3 The logical unit number specified in the

device control block is not configured for
this system.

6-45 AR22

A-register

Contents

(Octal) Error Condition
The number of records to be spaced is illegal.
The SPR$ request was issued for a device other
than magnetic tape or cassette tape.

10 The device was not previously reserved under
the user ID specified in the device control
block.

14 A space record request was issued for a dis-
abled device.

15 The device was not reserved by the restricted
activity which issued the SPR$ request.

32 The disk-resident driver for the specified
device is not currently resident in main
memory.

34 Requested executive function is not configured.

ACTION ROUTINE DETAILS

The following checks are made to determire if the SPRS$ request is legal:

1. A test is made to determine if the generic device type and the
logical unit number specified in the device control block have
been configured into the system.

2. A test is made to determine if the specified device is enabled.

3. A test is made to determine if the specified device has been
previously reserved by a RSV$ macro instruction.

4. A test is made to determine if the user ID specified in the
device control block matches the ID for which the device was
reserved. .

5. A test is made to determine if the specified device is magnetic
tape or cassette tape.

6. A test is made to determine if the number of records to be spaced
is legal. The number of records is illegal if zero for magnetic
tape or if zero or negative for cassette tape.

7. 1If the activity is restricted, a test is made to determine if
the specified device was reserved by the activity.

If the SPR$ request is not legal, control is returned to the error return
address specified in the SPR$ parameter list with the error code in the A-
register. If the SPR$ request is legal, the SPR$ request is queued according to
the priority level of the task which issued the SPR$ request. If the specified
device is currently busy processing another request, control is returned to the
calling program at the normal return. If the specified device is not currently
busy, the SPR$ request is initiated, and control is returned to the calling pro-
gram at the normal return. When the calling program receives control at the
normal return, a WIO$ request must be issued immediately if the calling program
desires sequential I/0. If nonsequential I/0 is desired, the calling program
continues processing to the point that the space record completion is required.
At this point, a WIO$ request must be issued. Upon completion of the space

6-46 AR22

N

——

record, the code specified by the I/O completion return address will be sched-
uled. When the calling program receives control at the I/0 completion return
address, the calling program must assume the responsibility of interrogating

the I/0 status block to determine if the SPR$ request was successful.

Word 1 of the status block will be 0 if no error occurred. (See Appendix

B for the status information).

OUTLINE PARAMETER LIST

Word Number Operation Operand
DAC DCB address
DAC error return address
DAC number of records address

The parameters in the outline parameter list are the same as those
described above for the inline parameter list.

NOTE: 1If an outline parameter list is used and it is desired
to update the I/0 status block address or the 1/0 com-
pletion return address in the DCB, the user must precede
the SPR$ function call with the instructions to store
the new I/0 status block address in the sixth word (word
5) of the DCB or the new I/0O completion return address in
the seventh word (word 6) of the DCB.

Examples:

The following examples illustrate the use of the SPR$ function to
backward space two records on a magnetic tape. The device control
block, DCNM, and the RSVS$ request, which must be executed prior

to the backward space, have been illustrated previously in the

DCB$ example. As in the examples in the description of the SPFS$
function the I/O status block address and the I/0 completion return
address remain as shown in DCNM.

* BACKWARD SPACE 2 RECORDS

SPR$ DCNM, ERSR,M2 BACKWARD SPACE RECORDS

* WIOS SEQUENTIAL, WAIT FOR SPACE RECORD

* COMPLETION

RTAD 1DA TBAD+1 BACKWARD SPACE COMPLETED, FETCH STATUS
SZE DID AN ERROR OCCUR?
JMP ERR YES, PROCESS ERROR .
- NO ERROR, CONTINUE

*

* ERROR RETURN - A-REGISTER CONTAINS THE

* ERROR CODE

*

ERSR -~- ERROR, ILLEGAL PARAMETER IN THE SPRS

* PARAMETER LIST OR IN THE DCB, DCNM

M2 DEC -2 NUMBER OF RECORDS TO BE SPACED BACKWARD

6-47 AR22

Using an outline parameter list, the above example would be written

as follows:

RTAD

* % kB ok * % *
]
n
o]

g
=
[
N

M2

SPR$
WIOS

SZE
JMP

DAC
DAC
DAC
DAC
DEC

PL12
(x)

TBAD+1

ERR

*+1
DCNM
ERSR
M2

BACKWARD SPACE 2 RECORDS

POINTER TO PARAMETER LIST TO X
BACKWARD SPACE RECORDS

SEQUENTIAL, WAIT FOR SPACE RECORD
COMPLETION

BACKWARD SPACE COMPLETED, FETCH STATUS
DID AN ERROR OCCUR?
YES, PROCESS ERROR
NO ERROR, CONTINUE

ERROR RETURN - A-REGISTER CONTAINS THE
ERROR CODE

ERROR, ILLEGAL PARAMETER IN THE SPR$
PARAMETER OR IN THE DCB, DCNM

PARAMETER LIST

POINTER TO PARAMETER LIST
DCB ADDRESS

ERROR RETURN ADDRESS
NUMBER OF RECORDS ADDRESS

NUMBER OF RECORDS TO BE SPACED BACKWARD

AR22

RWD$

Rewind (RWDS)

The RWD$ function is used to initiate the rewinding of a magnetic tape or

cassette tape.

FUNCTION ACTION

The RWDS$ action routine checks to determine if the specified device has
been previously reserved by a RSV$ request; if it has not been reserved, the
error return is taken. If it has been reserved, the parameters specified in the
device control block are checked, and the error return is taken if any of the
parameters is illegal. If legal, the rewind request is inserted at the beginning
of the queue for the requested device. The rewind request is initiated if the
specified device is not currently busy processing another request, and the normal
return is taken. Normally, the WIOS functicn should be called immediately.
However, further user code may be executed, and additional physical I/O requests

made before calling WIOS.

MACRO CALL FORMAT

Location Operation Operand

[symbol] RWDS$ DCB address,
error return address,
[1/0 status block address],
[1/0 completion return address)

symbol - Optional. The symbolic location of the RWD$ macro instruc-
tion.

DCB address - The name of the device control block associated with
the rewind device.

error return address - The address to which control is returned if
an error is found in the specified device control block param-
eters, or if the specified device was not previously reserved.

NOTE: Control does not return to the error return address
if an error occurs during the rewinding of a magnetic
tape or cassette tape. An error during the rewind
must be tested for by checking the I/0O status block
after control is returned to the I/O completion return
address.

I/0 status block address - Optional. The address of an 8-word
block used by the device driver to schedule the I/O
completion return to the user and to store the status infor-
mation as described in Appendix B. The I/0 status block address
will be in the X-register when control is returned to the user
at the I/0 completion return address. If this parameter is
omitted, the I/0 status block address specified in the device
control block is used. If this parameter is present, it
replaces the I/C status block address in the device contrcel
block and any subsequent I/0O call using the same device control
block uses the new I/0 status block address.

6-49 AR22

NOTE: Upda?ing of the I/0 status block address in the
DCB is performed by the execution of the inline
macro expansion and not by the action routine.

1/0 completion return address - Optional. The address where
control is to be returned after I/0O completion.

1f this parameter is omitted, the I/0 completion return
address specified in the device control block is used.
If this parameter is present, it replaces the I1I/0 com-—
pletion return address in the device control block and
any subsequent I1/0 call using the same device control
block uses the new I/0 completion return address.

NOTE: Updating of the I/O completion return address in
the DCB is performed by the execution of the inline
macro expansion and not by the action routine.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the RWDS request, after the rewind has been initiated, and probably before it
has been completed. The calling program must wait for rewind completion by

issuing a WIO$ function call.

I/0 COMPLETION RETURN

After a WIOS$ request has been completed, control will be returned to the
1/0 completion return address whether the tape has been rewound successfully
or unsuccessfully. The user must then test for errors that may have occurred

during the rewind, by checking the I/O status block (see I/0 Status Block Error

Code in Appendix B).

ERROR RETURN

control is returned to the error return address specified in the RWDS$
parameter list with the error code in the A-register when any of the following

errors is detected:

A-register

Contents o
(Octal) Error Condition
etas
1 The generic device type specified in the

device control block is not configured for
this system.

3 The logical unit number specified in the
device control block is not configured for
this system.

7 The RWDS$ request was issued for a device other
than magnetic tape or cassette tape.

6-50 . AR22

The following is a description of the status information returned to the
user when control is transferred to the user's I/0 completion return. The

states described below are indicated if the appropriate bit is set.

Word 1 (second word) of I/0 Status Block

Bit Interpretation

1 Word 4 contains the hardware status word which
indicates the error. If no error, this bit = 0.

2-3 Reserved
4 Not operational
5 Disabled
6-9 Reserved
10 Recovery error
11-16 Reserved

Word 3 (fourth word) of I/0 Status Block

Word 3 contains the actual number of words transferred.

Status Information for Line Printer Types 552x

Word 4 (fifth word) of I/0 Status Block

In addition to the software status returned in word 1 of the I/O status
block, the following hardware status is always returned in word 4 of the I/O
status block.

Bit Interpretation
1 Busy indicator

2 Ready indicator

3 Paper advancing indicator

4 Vertical format tape channel 2 (end of form)
5-13 Always zero

14 Cycle indicator
15-16 Always zero

Status Information for Line Printer Types 554x, 555x, and 556x

Word 4 (fifth word) of I/0 Status Block

In addition to the software status returned in word 1 of the I/0 status
block, the following hardware status is always returned in word 4 of the I/O
status block.

B-18 AR22

~

LINE PRINTERS (TYFES 5520, 5524, 5526, 5527, 5529, 5541-2, 5551-2, 5565-9)

The oniy legal physical 1/0 request for the line printer is output (OTPS$);
the only legal data mode is 0 (ASCII). When output to the line printer is
requested, the characters that are to be printed must be packed two characters
per word; the first word must contain a right-justified control character and
must be included in the range parameter of the OTP$ function call. There are
no restrictions on the contents of the left byte of this word. If the number of
words to be printed exceeds the 1imit‘for one line on the line printer, only one
line is printed and the remaining words in the user's output buffer are ignored
(Printer Typés 554x will overprint). The control character is acted upon before

the line is printed.

The first word of the user's output buffer must contain an ASCII forms

control character, right-justified, as follows:

ASCII
Character | (Octal) Description
A (space) 240 Advance one line
+ (plus) 253 No line advance
0 (zero) 260 Advance two lines
1 261 Advance to top of form
2a,b,c 262 Advance according to channel 2
3b 263 Advance according to channel 3
4b 264 Advance according to channel 4
Sb 265 Advance according to channel 5
6b 266 Advance according to channel 6
7b 267 Advance according to channel 7
8b’C 270 Advance according to channel 8
9a,b,c 271 Advance according to channel 9
Aa,b,c 301 Advance according to channel 10
Ba,b,c 302 Advance according to channel 11
Ca’b’C 303 Advance according to channel 12
H 310 Advance to top of form (channel 1)
%For Line Printer Types 5565-9, these characters will
result in a single line space.
bFor Line Printer Types 5551-2, if the vertical
format unit (VFU) option is not present, a single
line space will occur. For Line Printer Types
5541-2, a single line space will occur.
C®For Line Printer Types 552x, these characters will
result in a single line space.

If none of the above is specified, an advance of one line is the default

condition.

B-17

AR22

Word 4 (fifth word) of I/0 Status Block

In addition to the status returned in word 1 of the I/0 status block, the
following hardware status is returned in word 4 of the I1/0 status block whenever
bit 1 of word 1 is set.

Bit Interpretation
1 Seek error
2 Data unsafe condition
3 Failure of CPU to maintain transfer rate
4 Format error
5 Head selection error
6 Record address comparison failure
7 Bus parity error
8 Write operation requested while write protect is in force
9 Data check word comparison failure
10 Time-out error
11 Wrong cylinder comparison failure

12-15 Reserved
16 Missed data synchronization pulse

Word 6 (seventh word) of I/O Status Block

The following hardware status is always returned in word 6 of the I/O

status block.

Bit. Interpretation

1 Operational

2 Busy

3 Active

4 Reserved

5 Unit 0 ready

6 Unit 1 ready

7 Unit 2 ready

g Unit 3 ready

9-12 Reserved

13 Write track format end-of-range interrupt
14 Seek complete interrupt

15 Device going active interrupt
16 Busy being reset interrupt

B-16 AR22

os}
-
ot

InLerprctation

Controller busy

Data ready for transfer

Requested address not found
Attempt to format over index mark
Heads not loaded on selected unit

Requested unit not available

\lO’\U’!uwaF—“

Seek error (attempt to seek track ocutside — 0
to 202 limits)

8-10 Reserved
11 Write operation requested while in protect mode

12 Data unsafe (inconsistency in internal logic such
as read and write at the same time or erase with
detent; refer to the hardware manual for complete
list of data unsafe conditions)

13 Checksum error

14 Data transfer rate failure

15 Logical OR of bits 3 through 7 and 11 through 14
16 End-of-record mark found

Status information returned for requests to a DMA disk.

Word 1 (second word) of I/O Status Block

Bit Interpretation

1l Word 4 contains the hardware status word which
indicates the error; word 6 also contains
hardware status information.

Reserved

Missed interrupt

Unit not operational

Reserved

Missed data; transfer rate failure
Checksum error

Bus parity error

Reserved

© W W N o U1 WwN

=

Recovery error (miscellaneous)

-
P

Write protect error
12-15 Reserved
16 Controller busy

Word 3 (fourth word) of I/O Status Block

Wword 3 contains the actual number of words transferred or received.

B-15

AR22

REMOVABLE DISK SUBSYSTEMS (TYPES 471x, 472x, 473x. 4-1x, 475x, AND 478%)

The only legal physical 1/0 requests for the removable 4isk subsystem are
input (INP$) and output (OTPS).

For each input request, the range, which must be specified in the 1/0
parameter list, is used to determine the number of words to transfer to the
user-supplied I/O buffer. For each output request to a DMC disk, the number of
words transferred from the user-supplied I/0 buffer is determined by the
physical disk record length. The range specified for input and output requests
to a DMA or DMC disk must be a positive nonzero number less than or egual to the
physical disk record length. If the range 1is zero, negative, or exceeds the
physical disk record length, the error return to the calling program is taken;
an error code of 5 is returned in the A-register.

The following is a description of the status information returned to the
user when control is transferred to the user's I/0 completion return. The

states described below are indicated if the appropriate bit is set.

Word 1 (second word) of I/0O Status Block

Bit Interpretation
1 Word 4 contains the hardware status
word which indicates the error
2 Reserved '
3 Missed interrupt
4-15 Reserved
16 Device busy

Word 3 (fourth word) of I/0 Status Block

Word 3 contains the actual number of words transferred or received.

Word 4 (fifth word) of 1I/0 Status Block

In addition to the software status returned in word 1 of the I/0 status
block, the following hardware status is returned in word 4 of the I/0 status

block whenever bit 1 of word 1 is set and also whenever word 1 is 0.

B-14 AR22

FIXED-HEAD DISK SUBSYSTEM (TYPE 451x)

The only legal physical I/0 requests for the fixed-head disk subsystem are
input (INP$) and output (OTPS).

For each input and output request, the range, which must be specified in
the I/0 parameter list, is used to determine the number of words to transfer to
or from the user-supplied I/O buffer. The range must be a positive nonzero
number less than or equal to the physical disk record length. If the range is
zero, negative, or greater than the physical disk record length, the error
return is taken to the calling program with the error code of 5 in the

A-register.

The following is a description of the status information returned to the
user when control is transferred to the user's I/O completion return. The

states described below are true if the appropriate bit is set.

Word 1 (second word) of I/0 Status Block

Bit Interpretation

1 An error has occurred; the hardware
status is in word 4

2-16 Reserved

Word 3 (fourth word) of I/0 Status Block

Word 3 contains the actual number of words transferred or received.

Word 4 (fifth word) of the I/0 Status Block

The hardware status is always returned in word 4 of the I/O status block.

Bit Condition Tested
1 Operational
2 Busy
3 Active
4 Check byte error
5 Time-out error
6 Device not active error
7 Write protect error
8 Access error -
9 Bus parity error

10 Device 0 active

11 Device 1 active

12 Device 2 active

13 Device 3 active

14 Reserved

15 Device going active interrupt

16 Busy reset interrupt

B-13 AR22

Word 3 (fourth word) of I/0 Status Block

For input and output requests, word 3 contains the actual number of words

transferred or received.

Word 4 (fifth word) of I/0 Status Block

In addition to the status information returned in word 1 of the I/O status
block, the following hardware status is always returned in word 4 of the I/0O
status block.

w
[
ot

Interpretation

Operational

Busy

Active

Stop code

Read check error or range error
Validity error

Punch echo error

Punch cycle error

\Dw\ld\mbwwl—'l

Mark sense (option)

[
o

40 column (option)

—
o

51 column {(option)
External clock track (option)
13-14 Reserved

15 Device going active interrupt

[}
V)

16 Busy reset interrupt

B-12 AR22

w
-
o+

Interpretation

Option operational

Option busy

Device active

Access error present
Registration error present
Invalid character present
Trap flop

Reserved

\DGJ\IO’\U’!-wal—"

Cycle error bit 1

[u
o

Cycle error bit 2

(=]
[

Cycle error bit 3

[u-)
N

Cycle error bit 4

=
W

Cycle timing error

=
>

Busy reset interrupt

=
wn

Device going active interrupt

[
N

Ready interrupt

The above described states are true if the appropriate bit is set.

Status Information for Card Devices (Types 5151-5153, 5161-5164, 5172, and 5176)

The following is a description of the status information returned to the
user when control is returned to the user's I/O completion return. The states

~ described below are indicated if the appropriate bit is set.

Word 1 (second word) of I/0 Status Block

Bit Interpretation

1 An error has occurred; the hardware status is
in word 4.

Reserved

Missed interrupt
Device not operational
Device disabled
Reserved

Read or punch error

W ~N o e W N

Reserved
9 Mode errcr (conversion not configured)
10-12 Reserved
13 End of file; not an error condition
14 Reserved
15 No free memory block available for conversion

16 Reserved

B-11 AR22

Bit Condition Tested

1 Controller busy

2 Ready

3 End of card

4-11 Reserved

12 Punch check error
13 Read check error

14 vValidity error

15 Data access error
16 Read end of file

Status Information for Card Reader Type 5100

The following is a description of the status information returned to the

user when control is returned to the user's I/0 completion return. The states

described below are indicated if the appropriate bit is set.

Word 1 (second word) of I/O Status Block

Bit

1

> W N

5
6-9
10

11-12
13
14
15
16

Word 3

Interpretation

An error has occurred; the hardware
status is in word 4.

Reserved

Missed interrupt

Data not ready (not operational)
Device disabled (not operational)
Reserved

Recovery error

Reserved

End of file; not an error condition
Reserved

No free memory block available

Reserved

(fourth word) of I/0 Status Block

Word 3 contains the actual number of words received.

Word 4 (fifth word) of I/O Status Block

In addition to the status information returned in word 1 of the I/O status

block, the following hardware status is always returned in word 4 of the I/0

status block.

B-10 AR22

word 1 (second word) of I/0 Status Block

Bit Interpretation

1 An error has occurred; the hardware status
is in word 4

2-4 Reserved
6-9 Reserved

10 Recovery error; an attempt to retry has
resulted in an error

11-12 Reserved
13 End of file detected; not an error condition
14-16 Reserved

The above described states are indicated if the appropriate bit is set.

Word 3 (fourth word) of I/0O Status Block

For INPS and OTP$ requests, word 3 contains the actual number of words

transferred or received.

Word 4 (fifth word) of I/0O Status Block for Input Requests
for the Type 5121 Card Reader and Type 5140 Card Reader/Punch Devices

In addition to the status information returned in word 1 of the I/O status
block, the following hardware status is always returned in word 4 of the I/0
status block. ’

Bit Interpretation
1 Busy indicator

2 Ready indicator

3 End-of-card indicator

4-12 Always zero

13 Cycle indicator

14 Validity indicator

15 Data access error indicator
16 End-of-file indicator

Word 4 (fifth word) of I/0 Status Block for Output Requests
for the Type 5140 Card Reader/Punch Device

In addition to the status information returned in word 1 of the I/O status
block, the following hardware status is always returned in word 4 of the 1/0

status block.

B-9 AR22

CARD READER (TYPES 5100, 5121-5123, 5151-5153, 5161-5164)
CARD PUNCH (TYPE 5176)
CARD READER/PUNCH (TYPES 5140 AND 5172)

The legal physical I/0 request for the card reader is input (INPS); legal
physical I/O requests for the card punch are output (OTP$) and end of file
(EOF$) . Legal data modes for the card reader and card punch are 0 (ASCII), 1

(binary), and 2 (verbatim).

In the verbatim mode, bits 5 through 16 of the buffer word are replaced by

a card-image character.

Card-Image Character
(Row Number) 1211|0123 |4 |5 |6 |7 [8 |9

Buffer Word| 1| 2| 3| 4| 5] 6|7]8)]9|10[11]{12|13]|14|15(16

When input from the card reader is requested, the data is read from one
card and converted from 026 or 029 Hollerith card code to ASCII code, if the
configurable conversion routines have been loaded in the system. The conversion
routine 026 or 029 Hollerith is specified at system configuration time. The
number of words stored in the user's input buffer will equal the range value,
unless the range value exceeds the number of words read on a single card. In
this case, only the number of words on the card are stored in the user's input
buffer.

When output to the card punch is requested, the data in the user's output
buffer is converted,‘if the configurable conversion routines have been loaded
in the system. If the range of the words to be written is greater than the
number of words that can be punched on a single card, only one card is punched,

and the remaining words in the user's output buffer are ignored.

Status Information for Card Readers (Types 512x) and Card Reader/Punch

(Type 5140)

The following is a description of the status information returned to the
b

user when control is transferred to the user's I/O completion return.

IS ONE ASCIL STORED/WoRD RICHT~SISTIFIED

B-8 AR22

HIGH-SPEED PAPER TAPE PUNCH (TYPE 5210)

Legal physical I/0 requests for the paper tape punch are output (OTP$) and
end of file (EOF$); the legal data modes are listed in Appendix C. When output
to the paper tape punch is requested, data in the user's output buffer is
punched on the paper tape until the range count is exhausted. Punching of the

end-of-file characters is initiated only by an EOF$ request.

The following is a description of the status information returned to the

user when control is transferred to the user's I/O completion return:

Word 1 (second word) of I/0 Status Block

Bit Interpretation

1-2 Reserved

3 Missed interrupt
4 Data not ready
5 Device disabled

6-9 Reserved

10 Recovery error

11-14 Reserved

15 No free memory available
16 Reserved

The above described states are indicated if the appropriate bit is set.

Word 3 (fourth word) of I/O Status Block

For OTP$ requests, word 3 contains the actual number of words transferred.

B-7 AR22

HIGH-SPEED PAPER TAPE READER (TYPE 5010)

The only legal physical I/O request for the paper tape reader is input
(INPS). Legal data modes for the paper tape reader are those listed in
Appendix C. When input from the paper tape reader is requested, data on the
paper tape is read until an X-OFF character is reached, and then stored in the
user's input buffer. The word count in word 3 (fourth word) of the I/0 status

block indicates the number of words stored in the user's input buffer.

The following is a description of the status information returned to the

user when control is transferred to the user's I/0 completion return:

Word 1 (second word) of I/0 Status Block

Bit Interpretation

1-2 Reserved
Missed interrupt

Data not ready

Reserved

3

4

5 Device disabled
6

7 Checksum error
8

Parity error

9 Format error
10 Recovery error
11-12 Reserved
13 End of file detected; not an error condition
14 Range error
15 No free memory available
16 Reserved

The above described states are indicated if the appropriate bit is set.

Word 3 (fourth word) of I/0 Status Block

Word 3 contains the actual number of words received.

B-6 AR22

The following hardware status is always returned in word 6 of the I/O

status block.

Word 6

(seventh word) of I/0 Status Block

Bit

W 0 N A B W N -

e e
W N - O

14-15
16

Interpretation

Operational

Busy
Ready

Busy seek initiation

Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit

0
1

N H O W N

3

ready
ready
ready
ready
interrupt
interrupt
interrupt

interrupt

Reserved

Physical unit number of selected device

Busy being reset interrupt

AR22

Bit Interpretation

1 Word 4 contains the hardware status word
which indicates the error. Word 6 also
contains hardware status information.

Reserved

Missed interrupt

Not operational
Reserved

Transfer rate failure
Checksum error

Parity error

Reserved

© W W N O U B WwWN

[

Recovery error (Miscellaneous)

=
=

Volume protected on OTP$ request
12-14 Reserved

15 No free memory available

16 Controller busy

Word 3 (fourth word) of I/O Status Block

Word 3 contains the number of words transferred or received. This word

will always contain the range.

Word 4 (fifth word) of I/0 Status Block

In addition to the status returned in word 1 of the I/0 status block, the
following hardware status is returned in word 4 of the I/0 status block whenever
bit 1 of word 1 is set.

Bit Interpretation
1 Reserved
2 Write timing error
3 Failure of CPU to maintain transfer rate
4 Format error
5 Sector pulse time-out
6 Record address comparison failure
7 DMA has parity error
8 Write inhibit error
9 Data check word comparison failure
10 Time-out error
11-12 Reserved
13 Read timing
14 Seek error
15 Reserved
16 Missed data synchronization pulse

B-4 AR22

CARTRIDGE DISK SUBSYSTEM (TYPE 476x)

The only legal physical I/0 requests for the cartridge disk subsystem are
input (INP$) and output (OTPS).

For each input and output request, the range, which must be specified in
the I/0 parameter list, must be a positive nonzero number which is less than or
equal to the physical disk record length. If the range is zero, negative, or
greater than the physical disk record length, the error return is taken to the

calling program with the error code of 5 in the A-register.

The physical disk record length is used for all I/0 except for segment 0.
Therefore, if an input request is issued with a range which is less than the
physical disk record length, a free memory block is used as the input buffer.
The range is then used to determine how many words are to be transferred from
the free memory block to the usér—supplied buffer. The use of the free memory
block means that the system free memory requirements are increased by one

segment size block for sequential I/O.

The range is always used for I/0 to segment 0; however, since the label
resides on segment 0 of labeled volumes, the user should not write on segment 0

unless the volume is unlabeled.
The following is a description of the status information returned to the
user when control is transferred to the user's I/O completion return. The

states described below are indicated if the appropriate bit is set.

Word 1 (second word) of I/0 Status Block

The following error status is returned in word 1 of the I/0 status block.

If the data transfer was successful, this word will be 0.

B-3 AR22

All other output carriage control is the user's resp.nsibility and must be

included in his buffer.

The following is a description of the status information returned to the

user when control is transferred to the user's I/O0 completion return:

Word 1

(second word) of I/0 Status Block

Bit

10
11-13

14
15-16

Interpretation

Reserved

Data not ready

Missed interrupt

Reserved

Wrong mode

Control-K received during output
Reserved

Range error

Reserved

The above described states are indicated if the appropriate bit is set.

Word 3 (fourth word) of I/0 Status Block

Word 3 contains the actual number of words transferred or received.

AR22

APPENDIX B
PHYSICAL I/0 DEVICE INFORMATION

TELEPRINTER (TYPE 5310 KSR-33)

Legal physical I/0 requests for the KSR-33 teleprinter are input (INPS)
and output (OTP$); the only legal data mode for it is 0 (ASCII).

When input is requested from the KSR, the characters are read from the
keyboard, packed two characters per word, and stored in the user's buffer.
Characters are read until the user's buffer is full, or until a carriage return
character read from the keyboard is stored in the user's buffer. The following
control characters are checked on input and the action described is taken:

@ - Ignore last input line and start reading a new
line.
< - Ignore last character typed in.
Control-K

Terminate output. If control-K is struck when an
OTP$ (output) request is in progress, output is
terminated and a bit is set in the status word.
If an INPS$ (input) regquest is in progress, the
control-K is treated as an ordinary character.

If no input or output is in progress, the
control-K is ignored.

Control-P - Schedule attention task. If control-P is struck
when no input or output is in progress, or when an
OTP$ (output) request is in progress, the control-P
TCB supplied when the device was reserved is
scheduled. If the control-P TCB is already
scheduled, or if no control-P TCB was specified,
the character is ignored. If an INP$ (input)
request is in progress, the control-P is treated as
an ordinary character.

Control-Shift-M - Terminate input request and return end-of-file
status word.

When output to the teleprinter is requested, all data specified in the
buffer must be packed two characters per word, and is transmitted to-the
printer until the range count is exhausted. Before physical output is started,
the first word of the buffer is examined for line spacing control. If
required, the neceésary carriage control characters are set up. The second

byte of the first word of the caller's buffer is treated as follows:

Blank - Advance one line (insert CR, LF)
0 - Advance two lines (insert CR, LF, LF)
+ - Do not advance (no insert)

Other - Ignore character and advance one line (insert CR, LF)

B-1 ' . AR22

Table

A-1 (cont). Executive Function Call Error Codes

Error Codes
(A-register)

Indication (s)

175 No free memory blocks configured of sufficient size to
handle segments on a non-system disk (CRLS$ or CLLS).
176 There is no suitable volume available to satisfy the

request to connect a nonremovable volume (CVLS).

AR22

Table

A-1 (cont). Executive Function Call Error Codes

Error Codes
(A-register)

Indication (s)

151 Disconnect volume failed because the volume specified is
not mounted on the unit specified (DVLS).

152 Could not obtain control segment block for first direct
access GETS request. '

153 Segment number specified by the OTP$ request is illegal.

154 Device being released is still processing I/0 request
(RELS) .

155 Illegal reserve request (RSVS).

156 Mount is in process on requested unit (ALCS, DLCS, INPS,
or OTPS).

157 TPR$ request on behalf of a restricted activity was
aborted because the activity is being aborted. This
error code is passed to an action routine, such as CVLS,
which is making the TPRS request on behalf of the
activity.

160 Cannot change library passwords on library not opened in
master mode (CLPS).

161 Configuration not correct for direct access (GETS) .

162 Number of buffers to be used for multiple buffering is
not 2 or 3 (OPNS). ,

163 No work area available in user area (ALCS).

164 GSP$ parameter set number invalid.

165 GSP$ called with invalid password in an attempt to get
disk volume parameters.

166 The library name or file name to be added to the
directory is in an illegal format. The name must be an
alphanumeric string, starting with an alphabetic (CRLS
or OPNS).

167 This error code is passed from the abort cleanup routine
to the terminate activity action routine when there are
no l6-word blocks available to terminate a restricted
activity.

170 A restricted activity attempted to schedule a non-
restricted activity (SACS).

171 Attempt to schedule a restricted activity failed because
free memory is low (SACS) .

172 Attempt to schedule a restricted activity which is being
aborted (SACS).

173 Attempt to delete an activity which is running or
requested (Delete Activity utility (DA)).

174 Attempt to terminate an activity which is not runninc

(TMAS) .

AR22

Table A-1 (cont). Executive Function Call Error Codes
Error Codes
(A-register) Indication(s)

123 Starting segment number for deallocate is not accessible
to the user (DLCS).

124 Starting segment number for deallocate is beyond the
range of the bit map (DLC$ or CLSS).

125 Work area to be deallocated had not been allocated (DLCS
or CLSS).

x126 Physical I/0 error during input of allocation bit map
segment (ALCS$, DLC$, CLSS, or PUTS).

x127 Physical I/0 error during output of allocation bit map
segment (ALCS, DLCS$, CLSS$, or PUTS).

130 Special action error return on close; data in the block
buffer was not written successfully (CLSS).

131 Special action error return on close; the control segment
was not updated successfully (CLSS).

132 Special action error return on close; the file descriptor
was not successfully updated (CLSS).

133 Request to open library that is already open (OPLS).

134 Request to close library with open files in it (CLLS).

135 Generic device type is not configured or has no asso-
ciated volume descriptor (CVLS$, DVLS$, ALCS$, or DLCS).

136 Logical unit number is not configured or has no asso-
ciated volume descriptor (CVLS$, DVL$, ALCS$, or DLCS).

137 Incorrect specification of labeled/unlabeled volume in
the volume control block (CVLS).

140 Incorrect specification of public/private volume in the
volume control block (CVLS$).

141 Segment size specified in parameter 1 of the volume
control block is incorrect (CVLS) .

142 Number of segments per track specified in parameter 2 of
the volume control block is incorrect (CVLS).

143 Incorrect surface code in the volume control block
(CVLS) .

144 Segment size specified in the volume control block is
not a power of two between 64 and 512 (CVLS). N

145 Operator did not supply volume name or mount volume
(CVLS).

146 Requested volume is in use on another unit (CVLS).

147 No unit is available for mounting requested volume
(cvLs) .

x150 Physical I/0 error on input by volume manager (CVLS).

A-7

AR22

Table A-1 (cont). Executive Function Ca’l Error Codes
Error Codes
(A-register) Indication(s)
77 Library not found in the system library directory (CLLS
or CLPS).

100 Add library failed because information in library control
block buffer and volume descriptor are inconsistent
(CRLS) .

101 Delete library failed because library name does not agree
with directories (CLLS).

102 Delete library failed because another user has library
open or is opening it (CLLS).

103 Delete library failed because library is not empty
(first chunk is not empty or it is not the only chunk)
(CLLS) .

104 Library already deleted from system library directory.

It was removed from the volume library directory at this
time (CLLS).

105 Improper library master password (CLPS).

106 Change library password function out of range (CLPS).

107 Restricted activity specified a secondary TCB when
scheduling another activity.

110 The delete or update file directory entry failed because
the file name specified does not agree with the file name
in the disk directory entry when the relative position of
the entry is specified (CLSS).

111 The delete or update file directory entry failed because
the file name specified is not in the disk directory
(CLSS) .

112 Attempt to open library with invalid password (OPLS).

113 Illegal mode on open or close library request (OPLS and
CLLS) . :

114 Likhrary to be opened not in identified libraries' queue
(OPLS) .

115 The abort request failed because the activity to be
aborted is not a restricted activity or was not requested
(ABTS) .

116 Cannot close and delete a library that is not opened in
master mode. Normal close is attempted (CLLS) .

117 Allocation management is prohibited on unlabeled volumes
(ALCS$ or DLCS).

i20 User I/0 is prohibited on this volume (ALCS or DLCS) .

121 Bit map segment contains invalid ID (ALCS, DLCS, OPNS,
CLSS$, or PUTS).

122 Starting segment number for deallocate is not a work arca
boundary (DLC$ or CLSS).

A-6 AR2.

Table A-1 (cont). Executive Functicn Call Error Codes
Error Codes
(A-register) Indication({s)

54 Either file cannot be opened in update mode, because it
is being read or updated by another user (OPNS$), or
requested file cannot be opened in input mode, because
it is being updated by another user (OPNS).

55 Delete file request is illegal (CLSS).

X056 The last data segment could not be written correctly; the
file was saved, but the record{(s) in the last data segment
contain(s) extraneous information (CLSS).

x057 The control segment could not be updated properly; the
file was saved, but records were lost. Only those
records that were in the file when the control segment
was last updated properly were saved (CLSS).

x060 The request to save the file could not be accomplished;
the file was deleted (CLSS).

x061 The file could not be upd:c ed; it remains as it was prior
to the open request (CLSS$).

x062 The data segment containing the record for the last PUTS
request could not be written properly (CLSS).

x063 Physical I/O error on system library directory segment
input (CRLS$, OPLS$, CLLS, CLPS).

x064 Physical I/O error on system library directory segment
output (CRLS$, OPLS$, CLLS$, CLPS).

x065 Physical I/0 error on volume library directory segment
input (CRLS$, CLLS$, or CLSS).

x066 Physical I/0 error on volume library directory segment
output (CRLS$, CLL$, or CLSS).

X067 Physical I/0 error on file directory segment input (CRLS,
CLLS$, OPN$, CLSS, or SACS).

x070 Physical I/0 error on file directory segment output
(CRLS, CLLS, OPN$, or CLSS).

x071 Physical I/0 error on file descriptor directory segment
input (OPNS$, CLSS$, or SACS).

x072 Physical I/0 error on file descriptor directory segment
output (OPNS$, or CLSS).

73 No more library space in the system library directory
(CRLS) .

74 No available chunk in the volume library directery or in
the file directory (CRLS$S or OPNS).

75 Library already exists in the system library directory
(CRLS) .

76 Library already exists in the volume library directory
(CRLS) .

AR22

Table

A-1 (cont). Executive Function Call Error Codes

Error Codes
(A-register)

Indication (s)

35

The requested executive function cannot be loaded from
disk.

36

e A GETS$ or PUTS request was made for a file that has
variable length records, but direct access was speci-
fied in the FCB.

e A GET$ or PUTS$ request was issued for a file that has
variable length records, but the record length address
in the FCB is zero or the FCB is short (4 words) and
does not contain the record length address.

® A PUTS request was issued for a file that has variable
length records, but the record length specified by the
record length address in the FCB is zero or minus one
(the legal record length is 1 to 65,534).

37

The file type parameter in the user's file control block
(FCB) indicates that the direct access method is desired;
however, the record number address in the FCB is zero, or
the record number itself is zero or negative. The legal
range for record numbers is from 1 to 32,767 (GETS and
PUTS) .

x040

Physical I/O error occurred when PUT$ request was being
processed.

x041

Physical I/0 error occurred when OPN$ request in update
mode, CLS$ request in delete mode, GETS$ request or PUT$
request was being processed.

42

The record is invalid (GETS).

43

The maximum number of records that may exist in a file
(32,767) was exceeded (PUTS).

44

Maximum number of work areas that may be allocated for a
file was exceeded (PUTS).

45

The CFP$ request is illegal, because the I/0 mode param-
eter specified when the file was opened was not update.

46

The nondefault library is not open (CLPS$, CLLS, OPNS,
CLS$, CFP$, GET$, or PUTS).

47

A restricted activity issued a ULD$ request with one or
more I/0 requests queued but not processed.

50

The OPN$ request is illegal, because the password check
failed. A file password exists in the file descriptor
entry, but not in the user's FCB; or the file password

in the user's FCB does not match the password in the file
descriptor entry.

51

The number of work areas in the volume descriptor is less
than two (OPNS).

52

Maximum number of work areas that can be allocated for a
file is specified as 0 in the volume descriptor (OPNS).

53

Segment size specified in the volume descriptor is
illegal (OPNS).

Table

A-1 (cont). Executive Function Call Error Codes

Error Codes
(A-register)

Indication(s)

17

The file or activity name already exists in the disk
directory (OPNS$ or LA utility program).

20

No additional space is available, nor is there room for
expansion to add a file or activity name to the disk
directory (OPNS$ or LA utility program).

21

No work areas are available (ALCS, OPN$ to create a
file, or PUTS).

22

The request is illegal because the pointers to blocks
(LCBB and LNB) used by the library and file managers are
invalid for the specified library (CLLS$, CLPS$, CLSS,
CFP$, GETS, or PUTS).

23

GETS, PUTS, CLSS, or CFP$ request issued for an unopened
file, or the request is illegal for the mode specified
when the file was opened.

24

® OPNS$ request issued for a null file.

e The maximum record length address was not specified in
the OPN$ parameter list or in the file control block
(FCB) . .

e The maximum record length is 0 or negative for an
OPN$ request for a file that is to be created.

25

® The record buffer address was not specified in the FCB
for a PUT$ request.

® The record buffer address was not specified in the FCB
‘for a GET$ request when the record length is greater
than or equal to the segment length for fixed-length
records, or the maximum record length +1 equals or
exceeds the segment length for variable-length records.

26

There is no activity area configured for the requested
activity, or the activity area(s) configured is too small
for the requested activity (SACS).

27

GETS$ or PUTS$ request issued for a file opened in update
mode, but the maximum record length address was not
specified when the file was opened.

30

An RSVS$ request was issued for a device, the driver for
which is disk resident; however, the driver could not be
brought into memory, because its size exceeded the size
of the activity area.

31

An RSVS request was issued for a device, the driver for
which is disk resident; however, the driver could not be
brought into memory, because there was a disk read error.

32

An INPS, OTPS, SPFS, SPRS, EOFS$S, RWDS, or ULDS request
was issued for a device, the driver for which is disk
resident, but the device was not reserved.

33

The reguested activity could not be scheduled immediately
(SACS) .

34

The requested executive function is not configured.

AR22

Table

A-1 (cont). Executive Function Call Error Codes

Error Codes
(A-register)

Indication(s)

1

® The generic device type (GDT) specified in the device
control block (DCB) is not configured.

® Block size parameter specified in GBLS parameter list
is illegal.

e CCAS$ or CCL$ request to connect an unconfigured
absolute timer has been made.

Attempt to enable a device already enabled.

e The logical unit number specified in the device control
block is not configured.

® An issued TPRS request cannot be acknowledged because
the message table is full.

e The mode indicator specified in the device control
block is incorrect, i.e., <0 or >4, or is an invalid
mode for the specified device when an INP$ or OTPS$
request is issued. (Binary mode is specified for an
ASCII only device, ASR-35 or KSR teleprinters, or line
printer; verbatim mode only was configured for the card
reader, and the mode requested is ASCII or binary.)

® TYPS or TPRS$ request issued, but error was encountered
before or during message output.

The range value specified in the INP$ or OTP$ parameter
list is incorrect; i.e., <1 or >4095, or the I/0 buffer
crosses the 32K boundary between banks 1 and 2 (64K
system only) .

The humber of records or files specified in the SPR$ or
SPF$ parameter list for magnetic tape is zero. For
cassette tape, the record or file number is illegal when
negative or zero.

The function requested (SPF$, SPRS, EOFS, RWDS$, or ULDS)
for the generic device type specified in the device
control block is illegal.

10

The user ID specified in the device control block is
incorrect for the RELS$, INPS, OTPS$S, SPFS$S, SPRS$, EOFS,
RWDS$, or ULDS$ request.

11

An INPS$ request was issued for an output only device;

i.e., paper tape punch, card punch, or line printer.

12

An OTP$ request was issued for an input only device;
i.e., paper tape reader or card reader.

13

No free memory block available for an entry in usage
request queue (OPNS).

14

RSVS$, INPS, OTPS, SPFS$, SPRS$, EOFS$, RWDS, or ULDS regquest
issued for a disabled device.

15

A restricted activity issued a REL$, INPS, OTPS, SPFS,
SPR$, EOF$, RWDS$, or ULDS$ request for a device which was
not reserved by the activity.

16

The file or activity name was not found in the disk
directory (OPNS or SACS).

A-2

AR22

APPENDIX A

EXECUTIVE FUNCTION CALL ERROR CODES

When error returns are taken by executive function action routines, the

A-register and possibly the X-register contain information describing the error.

If the A-register contains a value less than '777, the X-register value should

be ignored. However, if the A-register value exceeds '777, the X-register con-

tains physical I/0 status information; it is decoded in the following manner:

If A-register
contents are:

Then the X-register contains:

'lnnn Setup error from the I/O input or output
request; see the error codes below for
INPS and OTPS.

'2nnn Software status from word 1 of the I/O
status block; refer to Appendix B for
status information.

'3nnn Hardware status from word 4 of the status

block; refer to Appendix B for status
information.

NOTE: nnn - Octal digits representing the real

error code.

Table A-1 indicates executive function call error codes, excluding those

for communications.

Table A-1. Executive Function Call Error Codes
Error Codes
(A-register) Indication(s)
0 e A device is reserved under another user ID when an RSVS

request is made.

e A nonsharable device has already been reserved under
the same user ID when another RSV$ request is made.

e No free memory blocks were available when a GBLS
request was made.

e Block size parameter specified in the RBL$ parameter
list is illegal.

AR22

LNK8

LINK (LNKS)

The LNK$ macro call provides the proper user/system interface between func-
tion calls that request executive functions and the System Function Manager. A
LNKS$ macro call must be present in each assembled segment of code that contains

references to the pseudoregisters and/or requests for executive functions.

Macro Expansion

The LNK$ macro call generates the subroutine ZALINK, which saves the
addréss of the executable function call, saves the Bank State Register (in a
64K system), enables extended addressing, and transfers control to the Function
Manager for processing of the executable function call. The macro expansion also
defines the addresses of pseudoregisters ZCRl through ZCR6, LNKS must reside in

the user's date.

Macro Call Format

Location Operation Operand

LNKS$

Normal Return

No normal return is associated with the LNKS$ macro call, since ZALINK is

not exeucted until a system function macro is called.

Error Return

No error return is associated with the LNKS$ macro call, since ZALINK is

not executed until a system function macro is called.

Qutline Parameter List

An outline parameter list is not applicable to the LNK$ macro call.

8-10 AR22

A-Register

Contents
{(Octal) Error Condition
34 Requested execution function is not
configured.
35 Requested execution function is disk-

resident and there was a disk error
during an attempt to load the func-
tion into main memory.

Action Routine Details

The ASCII date-time is cbtained from the system, the date is rearranged
into the user format and stored in the user buffer. Return is made to the

normal return.

Outline Parameter List

Word

Numbexr Operation Operand
DAC date-time block address
DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list.

Example:
In the example below, the buffer TBUF is used to receive the date-time
characters upon execution of the GDT$ action routine.

* GET THE DATE AND TIME

GDT$ TBUF, ERR

*

* THIS BUFFER WILL RECEIVE THE DATE~TIME CHARACTERS
*

TBUF BSZ 6 6 WORDS FOR DATE-TIME

ERR — ERROR RETURN

8-9 AR22

GDTS

GET DATE-TIME (GDT$)

The GDT$ function is used to transfer the system ASCII date and time to a

user-specified buffer.

Function Action

The GDT$ action routine rearranges the ASCII date-time into user format and
stores it in the user's buffer. It then returns control to the calling program

at the normal return.

Macro Call Format

Location Operation Operand
[symbol] GDTS$ date-time block address,

error return address

symbol - Optional. The symbolic location of the GDT$ macro instruc-
tion.

date-time block address - The address of the first word of a six-
word block into which the action routine will place the date-
time.

error return address - The address to which control is returned if
an error is found during the processing of the GDT$ function
call.

Normal Return

The ASCII date-time has been placed into the user-supplied buffer in the

following format (two characters per word):

Word 0 - Hours (00 through 23)

Word 1 - Minutes (00 through 59)

Word 2 - Two space characters

Word 3 - Day (01 through 31)

Word 4 - Month (01 through 12)

Word 5 - Year (xx through 99) (xx is the year in which system configu-

ration was performed.)

Error Return

Control is returned to the error return address specified in the GDT$
parameter list with the error code in the A-register when any of the following

errors is detected:

8-8 AR22

Using an outline parameter list, the above example would be written
as follows:

LDX PLIST SET UP POINTER TO OUTLINE LIST
SDT$ (X) SET SYSTEM DATE-TIME
PLIST DAC *+1 POINTER TO OUTLINE LIST
DAC DATE POINTER TO USER DATE-TIME BLOCK
DAC ERR1 ERROR RETURN ADDRESS
DATE BCI 1,12 HOUR
BCI 1,30 MINUTES
BCI i, REQUIRED SPACES
BCI 1,19 DAY
BCI 1,12 MONTH
BCI 1,73 " YEAR
ERR1 —_—— ERROR RETURN

8-7 AR22

A-Register

Contents
(Octal) Error Condition

34 Requested executive function is not
configured.

35 Requested executive function is disk-
resident and there was a disk error
during an attempt to load the func-
tion into main memory.

Not Significant One of the items in the date-time

block is out of its specified range.
(There is no specific error code asso-
ciated with this error.)

Action Routine Details

The system date-time is set to the value specified by the user in the date-
time block, and system date-time updating continues. Return is made to the

normal return.

If any of the user-specified items in the date-time block is out of its

stated range, the error return is taken.

Qutline Parameter List

Word
Number Operation Operand
DAC date-time block address
DAC error return address

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list.

Examples:

In the following example, the system date-time is set to the value
specified in the user block, DATE.

SDT$ DATE, ERR1 SET SYSTEM DATE-TIME
DATE BCI 1,12 HOUR

BCI 1,30 MINUTES

BCI 1, REQUIRED SPACES

BCI 1,19 DAY

BCI 1,12 MONTH

BCI 1,73 YEAR
ERR1 ——— ERROR RETURN

8-6 AR22

SET-DATE-TIME

SDT$

(5DTS)

The SDT$ function is used to set the system date-time to a user-specified

value.

Function Action

The SDT$ action routine takes the user-specified date-time value from the

user's buffer and rearranges that value into internal format for system use.

The macro routine then returns control at the normal return.

A restricted activity cannot call the SDT$ system function. If if attempts

to do so, the activity will be aborted.

Macro Call Format

Location Operation Operand
[symbol] SDTS date-time block address,

error return address

symbol - Optional. The symbolic location of the SDTS$ macro instruc-

tion.

date-time block address - The address of the first word of a 6-word

block from which the action routine will obtain the user-

specified date-time value.

error return address — The address to which control will be passed
if an error is found during the processing of the SDT$ function
call.

Normal Return

The system date-time has been set to the user-specified date-time value;

system date-time updating continues. The user must specify the date-time value

in the following format (two ASCII characters per word):

Word
Word
Word
Word
Word
Word

Error Return

0

o W N

Hours (00 through 23)
Minutes (00 through 99)
Two space characters
Day (01 through 31)
Month (01 through 12)

Year (xx through 99) (xx is the year in which system configu-
ration was performed.)

control is returned to the error return address specified in the SDTS

parameter list, with the error code in the A-register when any of the following

errors is detected:

8-5 AR22

Using an outline parameter list, the following example obtains from

parameter set 5 details on the user area.

LDX
GSP$

-
.
.

PLIST DAC
DAC
DEC
DAC

*

ABLOK2 DAC
BSZ

ERR2 —-—-

PLIST
(X)

*+]1
ABLOK2
5

ERR2

*+1

SET UP POINTER TO OUTLINE LIST
FETCH PARAMETER SET 5

POINTER TO OUTLINE LIST
PARAMETER BLOCK ADDRESS POINTER

PARAMETER SET 5: OPERATOR'S CONSOLE SPECIFICS

ERROR RETURN ADDRESS

PARAMETER BLOCK ADDRESS

WILL BE OPERATOR'S CONSOLE GENERIC DEVICE TYPE

ERROR RETURN

AR22

Error Return

Control is returned to the error return address specified in the GSP$
parameter list, with an error code in the A-register when any of the following

errors is detected:

A-Register

Contents
(Octal) Error Condition
34 The requested function is not configured.
35 Requested system function is disk-resident
and there was a disk error during an
attempt to load the function into main
memory.
164 Parameter set type number is out of the

range 1 through 5.

Action Routine Details

The parameter associated with the parameter set type number are placed in

the block pointed by the parameter block address pointer.

Outline Parameter List

Word

Number Operation Operand
DAC parameter block address pointer
DEC parameter set type number
DAC error return address

Parameters in the outline parameter list are the same
as those described for the inline parameter list.

Examples:
The following example obtains from parameter set 1 details on the
system disk.

GSP$ ABLOK1, 1,ERR1 FETCH SYSTEM PARAMETERS

ABLOK1 DAC *+1 PARAMETER BLOCK ADDRESS
BSZ 1 WILL BE SYSTEM DISK GDT
BSZ 1 WILL BE SYSTEM DISK UNIT NUMBER
BSZ 1 WILL BE SYSTEM DISK SEGMENT SIZE (IN WORDS)
BSZ 1 WILL BE NUMBER OF SEGMENTS PER WORK AREA
*
ERR1 - ERROR RETURN

8-3 AR22

GSP$

GET SYSTEM PARAMETERS (GSPS)

The GSP$ function is used to obtain certain system parameters associated

with the system disk and the operator's console.

Function Action

The GSP$ action routine places a predefined set of system parameters in

the user-supplied block.

Macro Call Format

Location Operation Operand

[symbol] GSPS$§ parameter block address pointer,
parameter set type,
error return address
symbol - Optional. The symbolic location of the GSP$ macro instruc-
tion.

parameter block address pointer - The address of a word containing °*
the address of a word or of a 4-word block where the system
parameters defined by the parameter set type are to be stored.

parameter set type - An integer (1 or 5) specifying the particular
set of system parameters defined below. '

Parameter Block Word
Set Type Size Number Contents of Word

1 4 0 system disk generic device
type
1 highest system disk unit
number configured
2 segment size on disk

number of segments per
work area

5 1 0 operator console generic
device type

NOTE: Parameter set types 2, 3, and 4 appeared in an earlier
release of 0S/700 but are no longer necessary to the
functioning of the system and are not supported in the
current release.

error return address - The address to which control is passed if an
error is found during the processing of the GSP$ macro call.

Normal Return

Control is returned to the calling program at the instruction following —_
the GSP$ function call. '

8-2 AR22

SECTION VIII
SPECIAL SYSTEM MACRO FUNCTIONS

In this section, four special functions are described in detail. The Get
System Parameters function (GSP$), is used to obtain parameters that were
specified at system configuration time. The two date/time functions, Set
Date/Time (SDTS$) and Get Date/Time (GDT$), enable the system, and programs
operating under the system, to keep track of the date and the time of day. The
Link function (LNK$), as already mentioned, is required when system functions

are performed or the pseudoregisters are referenced by a user program.

8-1 AR22

IBUF BSZ 32
*

ERTYP --- ERROR RETURN

7-9 AR22

OUTLINE PARAMETER LIST

Word

Number Operation Operand
0 DAC output buffer address
1 DEC output range
2 DAC error return address
3 DAC input buffer address
4 DEC input range

Parameters in the outline parameter list are
the same as those described above for the
inline parameter list.

Examples:

A 16-word message is to be printed on the operator console, and the
operator must type in a response of not more than 63 characters plus
a carriage return. The output message is contained in OBUF, and the
operator response will be collected in IBUF.

TPR$ OBUF, 16, ERTYP, 1BUF, 32

OBUF BSZ 7 RESERVED FOR TPRS$ ACTION
BCI 9, MESSAGE

*

IBUF BSz 32
*

ERTYP --- ERROR RETURN

Using an outline parameter list, the above example would be written
as follows:

LDX PLIST
TPR (X)

PLIST DAC *+1
DAC OBUF
DEC 16
DAC ERTYP
DAC IBUF
DEC 32

OBUF BSZ 7
BCI 9, MESSAGE

AR2?2

ERROR RETURN

Control is returned to the error return address specified in the TPRS

parameter list with the error code in the A-register when any of the following

errors are detected:

A-Register
Contents
(Octal) Error Condition

3 The message table (containing the identity of
users waiting for response to their message)
is full and no more TPRS$ requests can be
acknowledged at this time.

4 An error was encountered before or during the
message output, or the operator typed
control-K during message output.

34 Requested executive function is not
configured.

35 Requested executive function is disk-resident
and there was a disk error during an attempt
to load the function into main memory.

ACTION ROUTINE DETAILS

A test is made to see if the message table is full; if so, control is
transferred to the error return address with 3 in the A-register. If there are
no errors, a message number and the activity name are inserted in front of the
message and a regquest made on the I/0 scheduler to output the requested message.
An entry is made in the message table to indicate an activity waiting for a

response.

Upon the I/0 completion return, a check is made to determine if the message
output was interrupted by the operator typing control-K or if there were any
errors..and if so, control is transferred to the error return address with 4 in
the A-register. If there are no errors, after a response is keyed in by the
operator, a check is made for a valid message number and control is transferred
to the normal return of the associated activity. If an invalid message number
or an illegal number of characters is keyed by the operator, a message is typed
on the operator console indicating the errcr and allowing the operator to key

in the proper response.

Unlike a normal Input (INP$) request, a TPR$ request from a restricted
activity being aborted does not have to wait for a response before the abort
operation can proceed. 1If abort of a restricted activity is initiated between
the time the activity makes a TPR$ request and the time the operator response
is received, the output to the operator's console is allowed to continue, but
when the output has terminated, or if it has already terminated, OIP removes

the outstanding message request from the message table and the abort proceeds.

7-7 AR22

TPRS

Type a Message and Input a Response (TPRS)

The TPR$ function is used to type a message on the operator console and

request a response from the operator.

FUNCTION ACTION

The TPR$ acticn routine types on the operator console the message specified
in the parameter list, and waits for the operator to input the response. The
response is passed to the user program in a buffer. The carriage return termin-

ating the response is also placed in the user's buffer.

MACRO CALL FORMAT

Location Operation Operand
[symbol] TPRS output buffer address,

output range,
error return address,
input buffer address,
input range
symbol - Optional. The symbolic location of the TPR$ macro instruc-—
tion.

output buffer address - The address of the buffer containing the
message to be typed. The first seven words of the buffer must
not be used for storing the message. These words must be left
for system use and the message to be printed must start on the
eighth word. The message can contain ASCII characters only.

output range - The number of words contained in the message. The
output range must include the seven words reserved in the
output buffer for system use.

error return address - The address to which control is returned if
an error is found during the processing of the TPRS function
call.

input buffer address - The address of the first word of the buffer in
which the response is to be stored.

input range - The number of words expected in the response message
including the terminating carriage return character. The nunber
must not be greater than 36.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the TPR$ request, after the message has been output and response has been input,
provided no errors were detected during the processing of the TPRS function
call.

7-6 AR22

1f an outline parameter list were used,

LDX
TYPS

PLIST DAC
DAC
DEC
DAC

OBUF BSZ

BCI
*

ERTYP ----

PLIST
(X)

*+1
OBUF
12
ERTYP

5 » X000

BUFFER ADDRESS
RANGE
ERROR RETURN ADDRESS

RESERVED FOR SYSTEM USE

MESSAGE

ERROR RETURN

the following would be written:

AR22

ACTION ROUTINE DETAILS

The name of the activity making the reguest is inserted in front of the

message and a request is made on the I/0 scheduler to output the specified

number of words on the operator console.

After I/0 completion, the I/O status block is checked
operator interrupted message output by typing control-K or
errors and if there are any, control is transferred to the

with a 4 in the A-register. If no errors are indicated in

to see 1if the

if there were any
error return address
the 1/0 status block,

control is transferred to the normal return (the instruction following the TYPS

function call).

OUTLINE PARAMETER LIST

Word

Number Operation Operand
(0] DAC buffer address
1 DEC range

DAC error return address

Parameters in the outline parameter list are

the same as those described above for the

inline parameter list.

Examples:

It is desired to print on the operator console a message consisting of
five words. The seven words reserved for the TYP$ macro action make
a total range of 12 words. The 12 words begin at word OBUF.

TYPS OBUF, 12,ERTYP

OBUF BS2 7 7 WORDS FOR TYPS$ ACTION
BCI 5 » XXOXXXXXX MESSAGE

*

ERTYP --- ERROR RETURN

AR22

TYPS

Type a Message (TYPS)

The TYPS$ function is used to type a message on the operator console.

FUNCTION ACTION

The TYPS$ action routine types the message on the operator consocle, and

returns to the calling program after the message is completely typed.

MACRO CALL FORMAT

Location Operation Operand
[symbol] TYPS buffer address,
range,

error retrun address
symbol - Optional. The symbolic location of the TYP$ macro instruc-
tion.

buffer address - The address of the first word of the buffer con-
taining the message to be typed. The first seven words of the
buffer must not be used for storing the message. These words
must be left for system use and the message to be printed should
start on the eighth word. The message must consist of ASCII
characters only.

range - The number of words in the buffer. This range must include
the seven words reserved in the buffer for system use.

error return address - The address to which control is returned if an
error is found during the processing of the TYP$ function call.

NORMAL RETURN

Control is returned to the calling program, at the instruction following
the TYP$ request, after the message is output, provided no errors were detected
during the processing of the TYP$ action routine.

-

ERROR RETURN

Control is returned to the error return address specified in the TYP$
parameter list with the error code in the A-register when any of the following

errors are detected:

A-Register

Contents
(Octal) Error Condition
4 An error was encountered before or during the
message output, the operator typed control-K
during message output.
34 Requested system function is not configured.
35 Requested system function is disk-resident

and there was a disk error during an attempt
to load the function into main memory.

7-3 AR22

When responding to a TPR$ request, the operator precedes his typed input
with a control-P character and the 2-digit message number. The operator can
terminate tye typing of a message output from a TYP$ or TPRS call by typing a
control-K character. The calling activity then resumes at the TYPS or TPRS call
error return with the appropriate error code and can take any desired action in
response to the operator's interruption. Typing control-P during output on the

console does not effect the output, but allows the operator to type in a message
when the output is complete.

AR22

SECTION VII
OPERATOR INTERFACE FUNCTIONS

This section describes the executive function used to interface activities

and tasks with the operator.

OPERATOR INTERFACE FUNCTIONS

An activity can interface with the operator console through the operator
Interface Processor (OIP). An activity can type a message On the operator
console (KSR or ASR) with a type message (TYP$) action routine, or it can type
a message and request a response from the operator with a type message and

input a response (TPR$) action routine.
The format of the message output on the operator console is as follows:

(TYPS action routine) ACTVTY MESSAGE
(TPRS action routine) MN ACTVTY MESSAGE

ACTVTY - The 6-character name of the associated activity

MN - A 2-character message number

The spaces, the activity name, and the message number are inserted by the
0S/700 Executive components. The message number is used to associate a response
with a particular message. The Operator Interface Processor (OIP) keeps a table

of messages waiting for a reply.

Where the TPRS request is utilized and the message cannot be typed because
the message table is full, the user can try again later. While using the TYPS
or TPR$ requests the user must be aware that control is not transferred to him
until the whole message is output (in the case of a TYP$ reguest) or the
response received (in the case of a TPR$ request). The input range for the
response cannot be larger than 36 words (72 characters), including a terminating
carriage return. The output range can be of any length, however, and the output
puffer can include carriage control characters to cause the message to be

printed on several lines.

7-1 AR22

Examples:
For examples of the WIO$ function call with an inline parameter

1

RSVS$ and OTP$ description.
The examples below illustrate the use of the WIO$ function call

ist, see the previous I/O examples, in particular, see the

with an outline parameter list.

In the following example,

is not specified.

*
*

*
*
*

PLST10

LDX

WIOS

PLST10
(X)

the I/O0 status block address pointer

I/0 REQUEST ISSUED

PAR. LIST PTR. TO X
WAIT FOR I/0

PARAMETER LIST FOR WIOS

DAC
BSz

*41
1

PTR. TO PAR. LIST
NO I/O STATUS BLK. ADDR. PTR.

The example below illustrates the WIO$ function call with the
I/0 status block address pointer specified in the outline

parameter list.

*
*

*
*
*

PLST11

*
*
PSTSBK
*
*

STSBLK

LDX
WIOS

.

PLST11
(X)

I/0 REQUEST ISSUED

PAR. LIST PTR. TO X
WAIT FOR I/O

PARAMETER LIST FOR WIOS

DAC
DAC

DAC

BSZ

*47
PSTSBK

STSBLK

PTR. TO PAR. LIST
PTR. TO I/O STATUS BLK. ADDR.

I/0 STATUS BLK. ADDR.

I/0 STATUS BLOCK

AR22

NOTE: If @he user's program is reentrant and it is not
deglrable to specify the I/O status block address
pointer in the WIO$ request, the I/0O status block
may be a free memory block which is larger than
eight words in length, and the area following or
prior to the eight words required for the I/0 status
block may be used to contain user-saved parameters
or to contain pointers to other blocks obtained from
free memory.

I/0 COMPLETION RETURN

There is no normal or error return from the WIO$ call. The activity is
restarted at the I/0 completion address specified in the preceding I/0 re-
quest. If more than one I/0 request was made, I/0 completion for either re-
guest may occur first. The activity must continue to call WIO$ until all I/O
completions returns occur. That is, as many WIOS$ calls must be made as there

were physical I/0 requests.

ACTION ROUTINE DETAILS

A check is made to determine if the I/C status block address pointer has
been specified (is not zero) in the WIO$ parameter list; if it has not, the
current task is terminated. If the I/O status block address pointer is spec-
ified in the WIOS$ parameter list, the pseudoregisters ZCR1l, ZCR2, and ZCR3,
the user keys, the banks, and the B and S hardware registers are saved, and

the current task is terminated.

Before returning to the user at the I/0 completion return address or the
queued RSV$ request return address, the pseudoregisters ZCR1l, ZICR2Z, and ZCR3,

the user keys, the banks, and the B and S hardware registers are restored.

If a restricted activity issues a WIO$ request, a check is made to determine
if there is an I/O request or queued reserve request outstanding. If there is
no request outstanding, the restricted activity is aborted. If the WIOS$ re-

quest is legal, the WIOS function completes the request as described above.

OUTLINE PARAMETER LIST

Word Number Operation Operand
0 DAC [I/0 status block address pointer]

Parameters in the outline list are the same as those described above
for the inline parameter list. If the I/0 status block address
pointer is not specified, a BSZ 1 statement must replace the re-
spective DAC statement.

6-59 AR22

Wi0$

Wait For I/0 (WIOS)

The WIO$ function is used to terminate the current task following an I/O
request or queued RSV$ request. The user activity is restarted when the I/0

request is completed.

FUNCTION ACTION

The WIOS$ action routine checks to determine if the I/0 status block address
pointer has been specified in the WIOS parameter list, and if it has not,
terminates the current task. If it has, the user pseudoregisters ZCR1l, ZCR2, and
ZCR3, the user's state (the keys, the banks, the B and S hardware registers) are

saved, and the current task is terminated.

Before returning to the user at the I/0 completion return address or the
queued RSV$ request return address, the user's pseudoregisters ZCR1, ZCR2, and
ZCR3, and the user's state (the keys, the banks, the B and S hardware registers)

are restored.
If a restricted activity issues a WIOS request with no I/O request waiting
for I/O completion or with no queued reserve request waiting to be processed,

the activity is aborted.

MACRO CALL FORMAT

Location Operation Operand
[symbol] WIOS [I/0 status block address pointer]

symbol - Optional. The symbolic location of the WIOS$ macro in-
struction. '

I/0 status block address pointer - Optional. The address of a word
which contains the address of an 8-word block. The I/0
status block must be the I/0 status block which was specified
in the device control block for an Input (INPS$), Output (OTPS),
Space File (SPF$), Space Record (SPR$), End of File (EOFS) ,
Rewind (RWD$), or Reserve (RSV$) function call for which the
Wait I/0 request is being issued. If the I/O status block
address pointer is specified in the WIOS$ parameter list, the
keys, the B and S hardware registers, and the pseudoregisters
ZCR1l, ZCR2, and ZCR3 will be saved and then restored before
returning to the user at the I/0 completion return address or
the queued RSVS request return address. In this case, only one
I/0 request may be issued prior to the WIOS$ request. If the
I/0 status block address pointer is not specified in the WIOS
parameter list, the registers specified above are not saved and
restored.

6-58 AR22

UNLOAD-REWIND MAGNETIC TAPE WITH AUTOMATIC

RELEASE
ULDS$ DCNM, ERUL. REWIND AND RELEASE THE DEVICE
* -——— RETURN BLOCKS TO FREE CORE STORAGE AND
* TERMINATE

ERROR RETURN - A-REGISTER CONTAINS THE
* ERROR CODE

ERUL ERROR, ILLEGAL PARAMETER IN THE DCB, DCNM

Using an outline parameter list, the above example would be written
as follows:

* UNLOAD-REWIND MAGNETIC TAPE WITH AUTOMATIC
* ‘RELEASE
*
1LDX PL20 PARAMETER -IST POINTER TO X
ULDS$ (X) REWIND AND RELEASE THE DEVICE
—— , TERMINATE
*
* ERROR RETURN - A-REGISTER CONTAINS THE
* ERROR CODE
*
ERUL --- ERRORS, ILLEGAL PARAMETER IN THE DCB, DCNM
*
* PARAMETER LIST
*
PL20 DAC *4+] POINTER TO PARAMETER LIST
DAC DCNM DCB ADDRESS
DAC ERUL ERROR RETURN ADDRESS

6-57 AR22

5. A test is made to determine if the specified device is magnetic
tape or cassette tape.

6. If the activity is restricted, a test is made to determine if the
specified device was reserved by the activity, and a test is made
to determine if all I/O requests issued for the specified device
have been completed.

If the ULD$ request is not legal, control is returned to the error return
address specified in the ULD$ parameter list with the error code in the A-
register. If the ULD$ request is legal, the ULD$ request is placed at the
beginning of the gqueue for the requested device. If the requested device is
currently busy processing another request, control is returned to the calling
program at the normal return. If the requested device is not currently busy,
the ULD$ request is initiated, and control is returned to the calling program
at the normal return. When the calling program receives control at the normal
return, the task or activity may then be terminated.

NOTE: Before the ULD$ request is issued, all I/0 requests for

the device specified in the device control block of the
ULDS$ request must be completed. Also, after the ULDS
request is issued, no other I/0O requests for the device
specified in the device control block of the ULD$ request

can be issued until the device is again reserved by issuing
a RSVS$ request.

OUTLINE PARAMETER LIST

Word Number Operation Operand
0 DAC DCB address
DAC error return address

Parameters in the outline parameter list are the same as those
described above for the inline parameter list.

NOTE: If an outline parameter list is used and it is desired
to update the I/O status block address in the DCB, the
user must precede the ULD$ function call with the in-
structions to store the new I/0 status block address
in the sixth word (word 5) of the DCB.

Examples:

The following examples illustrate the use of the ULD$ function to
rewind a magnetic tape and automatically release the device spec-
ified in the DCB. This allows the user to terminate without
waiting for the magnetic tape to finish rewinding. The device con-
trol block is DCNM, which is shown in the DCB$ example, and the
RSVS$ request, which must be executed prior to the unload, is also
shown in the DCB$ example.

6-56 AR22

I/0 COMPLETION RETURN

There is no I/0 completion return for ULD$ requests. The WI0$ function is

not used following the ULD$ function call.

ERROR RETURN

Control is returned to the error return address specified in the ULDS$
parameter list with the error code in the A-register when any of the following

errors is detected:

A-register

Contents
(Octal) Error Condition

1 The generic device type specified in the
device control block is not configured for
this system.

3 The logical unit number specified in the
device control block is not configured for
this system. »

7 The ULDS$ request was issued for a device other
then magnetic tape or cassette tape.

10 The device has not been previously reserved
under the user ID specified in the device
control block.

14 An ULDS request was issued for a disabled
device.

15 The device was not reserved by the restricted
activity that issued the ULD$ request.

32 . The disk-resident driver for the specified
device is not currently resident in main
memory.

34 Requested executive function is not configured.

47 1/0 request remains to be processed on the de-

vice (restricted activities only).

ACTION ROUTINE DETAILS

The following checks are made to determine if the ULD$ function call is
legal:

1. A test is made to determine if the generic device type and the
logical unit number specified in the device control block have
been configured into the system.

2. A test is made to determine if the specified device is enabled.

3. A test is made to determine if the specified device has been
previously reserved by a RSVS$ function call.

4. A test is made to determine if the user 1D specified in the
device control block matches the ID for which the device was
reserved.

6-55 AR22

ULD$

Unload (ULDS)

The ULD$ function is used to initiate the rewinding of a magnetic tape or
cassette tape, and, upon the completion of the rewind, releases the requested

device without the calling program issuing a REL$ request.

FUNCTION ACTION

The ULDS$ action routine checks to determine if the specified device has
been previously reserved by a RSV$ request; if it has not been reserved, the
error return is taken. If it has, parameters specified in the device control
block are checked, and the error return is taken if any of the parameters is
illegal. If the parameters are legal, the ULD$ request is inserted at the be-
ginning of the queue for the specified device. The unload is initiated if the
specified device is not currently busy processing another request, and the
normal return is taken. All I/0 requests for the device must have been com-
pleted when ULD$ is called. Unlike other physical I/0 functions, ULD$ must not
be followed by a WIOS$ call.

MACRO CALL FORMAT

Location Operation Operand

[symbol] ULDS$ DCB address,
error return address,
[1/0 status block address]

symbol - Optional. The symbolic location of the ULDS$ macro instruc-
tion.

DCB address - The name of the device control block associated with the
unload device.

error return address - The address to which control is returned if an
error is found in the specified device control block parameters.
or if the specified device was not previously reserved.

I/0 status block address - Optional. The address of an 8-word block
used to insert the ULD$ request in the queue for the specified
device.

If this parameter is omitted, the I/O status block address
specified in the device control block is used. If this
parameter is present, it replaces the I/0 status block ad-
dress in the device control block and any subsequent I/0 call
using the same device control block uses the new I/O status
block address.

If additional I/O requests are to be made to the specified
device following a ULD$ request, the device must first be
reserved.

NOTE: Updating of the I/0 status block address in the DCB
is performed by the execution of the inline macro
expansion and not by the action routine.

6-54 AR22

RTAD

BOT

LDX

WIOS
LDA
SUB
SZE
JMP

DAC
DAC
DAC

oCT

PLIO
(x)

TBAD+1
BOT

ERR

*+1
DCNM
ERRR

PARAMETER LIST POINTER TO X

REWIND

SEQUENTIAL, WAIT FOR REWIND COMPLETION
REWIND COMPLETION, FETCH STATUS

CHECK FOR BEGINNING OF TAPE

DID AN ERROR OCCUR?

YES, PROCESS ERROR

NO ERROR, CONTINUE

ERROR RETURN - A-REGISTER CONTAINS THE
ERROR CODE

ERROR, ILLEGAL PARAMETER IN THE DCB, DCNM

PARAMETER LIST

POINTER TO PARAMETER LIST
DCB ADDRESS
ERROR RETURN ADDRESS

I/0 STATUS BLOCK INDICATOR FOR BEGINNING

OF TAPE

6-53

AR22

OUTLINE PARAMETER LIST

Word Number

Operation Operand
DAC DCB address
DAC error return address

The parameters in the outline parameter list are the same as those
described above for the inline parameter list.

NOTE: If an outline parameter list is used and it is desired to
update the I/O status block address or the I/0 completion
return address in the DCB, the user must precede the RWDS$
function call with the instructions to store the new I1/0
status block address in the sixth word (word 5) of the
DCB or the new I/0 completion return address in the seventh
word (word 6) of the DCB.

'Examples:

The following examples illustrate the use of the RWDS$ function to

rewind a magnetic tape.

The ‘device control block, DCNM, and the

RSV$ request, which must be executed prior to the rewind, have
been shown previously in the DCB$ examples.

RWDS
WIOS

RTAD LDA
SUB
SZE
JMP

*

*

*

*

ERRR ---

BOT OCT

DCNM, ERRR

TBAD+1
BOT

ERR

REWIND MAGNETIC TAPE

REWIND

SEQUENTIAL, WAIT FOR REWIND COMPLETION
REWIND COMPLETION, FETCH STATUS

CHECK FOR BEGINNING OF TAPE

DID AN ERROR OCCUR?

YES, PROCESS ERROR

NO ERROR, CONTINUE

ERROR RETURN - A-REGISTER CONTAINS THE
ERROR CODE

ERROR, ILLEGAL PARAMETER IN THE DCB, DCNM

I/0 STATUS BLOCK INDICATOR FOR BEGINNING
OF TAPE

Using an outline parameter list, the above example would be written

as follows:

REWIND MAGNETIC TAPE

A-register

Contents
(Octal) Error Condition
10 The device was not previously reserved under
7N the user ID specified in the device control
block.

14 A RWDS$ request was issued for a disabled
device.

15 The device was not reserved by the restricted
activity which issued the RWD$ request.

32 The disk-resident driver for the specified
device is not currently resident in main
memory.

34 Requested executive function is not configured.

ACTION ROUTINE DETAILS
The following checks are made to determine if the rewind request is legal:

1. A test is made to determine if the generic device type and the
logical unit number specified in the device control block have
been configured into the system.

2. A test is made to determine if the specified device is enabled.

3. A test is made to determine if the specified device has been
previously reserved by a RSV$ function call.

4. A test is made to determine if the user ID specified in the
device control block matches the ID for which the device was
reserved.

Ve 5. A test is made to determine if the specified device is magnetic
tape or cassette tape.

6. If the activity is restricted, a test is made to determine if the

specified device was reserved by the activity.

If the RWDS$ request is not legal, control is returned to the error return
address specified in the RWD$ parameter list with the error code in the A-
register. If the RWD$ request is legal, the RWDS request is placed at the
beginning of the queue for the specified device. If the requested device is
currently busy processing another request, control is returned to the calling
program at the normal return. If the specified device is not currently busy,
the RWD$ request is initiated, and control is returned to the calling program at
the normal return. When the calling program receives control at the normal
return, a WIO$ function call must be issued immediately if the calling program
desires sequential I/O. If nonsequential I/O is desired, the calling program
continues processing to the point that the rewind completion is required. At
this point, a WIO$ function call must be issued. Upon completion of the rewind,
the code specified by I/O completion return address will be scheduled. When
the calling program receives control at the I/0 completion return address, the
calling program must assume the responsibility of checking the I/0 status block
to determine if the RWD$ request was successful. Word 1 of the status block

»~~will contain a 2 if no error occurred (see Appendix B for the status information) .
Note that before the RWD$ request is issued, all I1/0 requests for the device

specified in the device control block of the RWD$ request must be completed.

6-51 AR22

Bit Interpretation

Operational indicator
Busy indicator

1

2

3 Active indicator

4 End of form detected (See Note.)
5

Cycle check error (Line Printer Types 556x only) or 0O
(See Note.)

6-8 Always zero

9 DMA parity error
10-14 Always zero
15 Active interrupt
16 Not busy interrupt

NOTE: Bits 4 and 5 are interchanged from the status word
received from the hardware for compatibility with
Printer Types 552x. For Printer Types 554x, 555x,
and 556x%, the end-of-form bit will be set in the I/0
status block only if it is detected by the hardware
and the forms control specified to the hardware was
not a channel advance, including top of form.

Status Information for Line Printer Types 556%

Word 6 (seventh word) of I/O Status Block

In addition to the status information returned in words 1 and 4 of the I/0
status block, the following hardware status is always returned in word 6 of the
I1/0 status block.

Bit Interpretation
1 Printer pattern parity error
2 Line buffer parity error
3 Sentinel bit error

4 Index check error
5 Load cycle in progress
6 Print cycle in progress
7 Format cycle in progress
8 Test mode
9 Interrupt request

10 Trap circuit

11 True comparison

12-16 Always zero

B-19 AR22

7-TRACK MAGNETIC TAPE SUBSYSTEMS (TYPES 402x AND 404x)
9-TRACK MAGNETIC TAPE SUBSYSTEMS (TYPES 405x, 415x, 418x, AND 419x)

The following applies to 7~track magnetic tape (Types 4021 and 4041) and to
9-track magnetic tape {(Types 4051, 4150, 4180, and 4190).

Physical I/0 requests for magnetic tape are input (INP$), output (OTPS),
end of file (EOF$), space file (SPF$), space record (SPRS), rewind (RWDS), and
unload (ULD$). Legal data modes for magnetic tape are 0 (ASCII), 1 (binary),

and 2 (verbatim).

For 9-track tapes, ASCII data is not translated to BCD, but remains in
ASCII format. For all devices, the entire 16 bits of each data word are

transferred to/from the magnetic tape.

For 7-track tapes (Type 4021), binary mode specifies that all 16 bits of
each word (three characters per word) are to be transferred to/from the magnetic

tape:

1 617 12113 16

first frame second frame third frame

Verbatim mode specifies that the high-~order 12 bits of each word (two characters
per word) are to be transferred to/from the magnetic tape:

1 . 6|7 12}13 16

first frame second frame not used

For 7-track tapes (Type 4041), binary mode specifies that the 16 bits of
each data word are to be transferred to/from the magnetic tape in binary/word

mode:

1 6|7 1213 16

first frame second frame third frame

Verbatim mode specifies that 12 bits of data are transferred to/from the

magnetic tape in binary/byte mode:

1 2|3 819 10} 11 le6

first frame second frame

(This BCD tape format is also used for 9-track magnetic tape Type 4051.)

B-20 AR22

When input from magnetic tape is requested, one record is read, and the
data stored in the input buffer. The range value must be greater than or equal
to the length of the record that is to be read from the tape. If the range
value is less than the physical tape record, the parity error indicator is set
in the I/0O status block. If the data mode specified was ASCII, the data read
from the magnetic tape is converted from BCD to ASCII for 7-track tape and

stored in the user's buffer.

When output to the magnetic tape is requested, all data in the user's
output buffer is written to the record on the tape. If the data mode specified
is ASCII, the data in the user's output buffer is converted to BCD for 7-track
tape before being written to the magnetic tape. Note that for 7-track tapes
when the ASCII data mode is specified, the conversion from ASCII to BCD on
cutput to tape and the reverse conversion from BCD to ASCII on input will result

in the @ (at sign) character (ASCII '300) being converted to a (single guote)

character (ASCII '247). This occurs as follows:

Character in Memory - Character on 7-track Tape -~ Character in Memory

Graphic ASCII BCD Graphic ASCII
! '247 g '14 - ! 1247
@ '300 g ‘14 ing ' '247

If the end of tape or the beginning of tape is detected before the
specified number of files to be spaced has been reached when an SPF$ request 1is
being processed, spacing of the files does not continue. The number of files

actually spaced is returned in word 3 of the I/O status block.

If the end of file is detected before the specified number of records to be
spaced has been reached when an SPR$ request is being processed, spacing of the
records is not continued. The number of records actually spaced is returned in

word 3 of the I/0 status block.

The following is a description of the status information returned to the

user when control is transferred to the user's I/0 completion return.

B-21 AR22

Word 1 (second word) of I/0 Status Block

Bit " Interpretation

1 Types 4041 and 4051 only: word 4 contains
one hardware status word indicating the
error; word 6 contains the second hardware
status word.

2 Reserved

3 Missed interrupt
4 Reserved

5 Device disabled

6-7 Reserved

8 Parity error
9-10 Reserved
11 Protect error
12 Reserved
13 End of file
14 End of tape
15 Beginning of tape
16 Device busy

The above described states are indicated if the appropriate bit is set.

Word 3 (fourth word) of I/O Status Block
For input and output requests, this word contains the actual number of
words transferred or received. For Space File and Space Record requests, this

word contains the number of files or records spaced.

Status Information for Magnetic Tapes (Types 4041 and 4051)

Word 1 (second word) of I/0 Status Block

These tapes return the same status information to the user when control is
returned to the user's I/C completion return as defined for Types 4021 and 4150

Magnetic Tapes. (See word 4.)

Word 3 (fourth word) of I/0 Status Block

For input and output reqguests, this word contains the actual number of
words transferred cr received. For Space File and Space Record requests, this

word contains the number of files or records spaced.

B-22 AR22

Word 4 (fifth word) of I/0 Status Block

In addition to the status information returned in word 1 of the I/0 status
block, these tapes return the following hardware status word in word 4 of the
I/0 status block:

Bit Interpretation

Operational
Busy

Active
Device selected

Device selected

N O O

Device selected

Device 3 selected

© N e w N

Rewind in process
9 Write protect
10-14 Reserved
15 Device going active interrupt

16 TCU busy reset interrupt

Word 6 (seventh word) of I/0 Status Block

In addition to the status information returned in words 1 and 4 of the I/O
status block, these tapes also return the following status word in word 6 of the
I/0 status block.

Bit Interpretation
1 Beginning of tape status
2 End of tape status
3 File mark detected
4 Premature termination
5 Range too short
6 Range equals zero
7 LRC error
8 Low not high error
9 Skew error
10 CRC error
11 False gap/error detectable
12 Invalid setup
13 Data rate error
14 Write current failure
15 Write runaway
16 CRC parity/VRC error

B-23 AR22

CASSETTE TAPE SUBSYSTEM (TYPE 5400)

The physical I/0 requests for the cassette tape are input (INP$), output
(OTPS), end of file (EOFS), space file (SPF$), space record (SPRS), rewind o~
(RWD$) , and unload (ULDS). Spacing records and/or files, however, can only be
forward. The legal data modes for cassette tape are 0 (ASCII), 1 (binary) . and
2 (verbatim). Each of these data modes results in all 16 bits of each word

being transferred.

When input from cassette tape is requested, one record is read from the
tape and stored in the user-specified buffer. The range value must be greater
than or equal to the length of the record that 1s to be read. 1If the range
value is less than the length of the record, the parity error indicator is set
in word 1 of the I/O status block. If a file mark is encountered when a record
is read, the EOF status is set in word 1 of the I/0 status block, and tape

motion ceases immediately after the file mark.

When output to the cassette tape is requested, all data in the user's
output buffer is written as a single record on the cassette tape. If a tape
trailer label is encountered while a record is being written, no word count is
returned to the user's status array. The end-of-tape indicator in word 1 of the
I/0 status block is set when the end-of-tape marker (18" before the physical
EOT) is encountered. Writing after this is permitted but not recommended, as it
is impossible to tell when the tape trailer will be encountered. Writing on ~~
this section of tape is mostly for a file mark, to denote EOT.

If the physical end of tape is encountered before the specified number of
records or files have been spaced, tape motion ceases and word 3 of the I/0
status block reflects the number of records or files successfully spaced.
Further, if a file mark is encountered when records are spaced, tape motion
ceases, and the number of records successfully spaced is returned in word 3 of
the I/0 status block. ‘

The following describes status information returned to the user when

control is transferred to the user's I/0 completion return. The states

described below are indicated if the appropriate bit is set.

B-24 AR22

Word 1 (second word) of I/0 Status Block

Bit Interpretation
1 An error has occurred; the hardware status
is in word 4
2 Reserved
3 Missed interrupt
4 Reserved
5 Device disabled
6-7 Reserved
8 Parity error
9-10 Reserved
11 Write protect error
12 Reserved
13 End of file
14 End of tape
15 Beginning of tape
16 Device busy

Word 3 (fourth word) of I/0 Status Block

For input and output requests, this word contains the actual number of
words transferred or received. For Space File and Space Record requests, this

word contains the actual number of files/records spaced.

Wword 4 (fifth word) of I/0.Status Block

In addition to the status information returned in word 1 of the I/0 status
‘block, the following hardware status word is returned in word 4 of the I1/0

status block, if an irrecoverable error has occurred.

B-25 AR22

[o2]
-
o

=
ouooo\lmm.huwl—-l

I B R SR SRy
- ST, TG PR Py

Interpretation

Operational

Busy

Active, first handler
Active, second handler
EOT marker

BOT marker

Rewind

Handler select

Access error

Not used

Write phase-encoded data
Read phase-encoded data

Write protect

Not busy interrupt
Activé interrupt
Data ready interrupt

AR22

TELEPRINTERS (KEYBOARD/PRINTER) (TYPE 5507 ASR-35 AND TYPE 5307 ASR-33)

The physical I/O requests, the mode, and the control characters for the
ASR-35 (keyboard/printer) are the same as described earlier for the KSR-33 tele-
printer. The only difference is that bit 15 in word 1 (second word) of the I/0
status block is set if there are no free memory blocks available for the ASR
device driver to use.

B-27 AR22

TELEPRINTERS (READER/PUNCH) (TYPE 5507 ASR-35 AND T.: . 5307 ASR-33)

The legal physical I/0 requests for the ASR-33 {(veader/punch) are input
(INP$), output (OTP$), and end of file (EOF$). Legal data modes for the ASR

device are listed in Appendix G.

When input is requested, data on paper tape is read until an X-OFF char-
acter is reached, and then stored in the user's input buffer. The word count
in word 3 (fourth word) of the I/O status block indicates the number of words

stored in the user's input buffer.
When output is requested, data in the user's output buffer is punched on
paper tape until the range count is exhausted. Punching the end-of-file char-

acter is initiated only by an EOF$ request.

The following is a description of the status information returned to the
user when control is transferred to the user's I/0 completion return.

Word 1 (second word) of I/0 Status Block

Bit Interpretation
1-2 Reserved

3 Missed interrupt

4 Device not ready

5-6 Reserved

7 Checksum error
8 Parity error
9 Mode error or format errorx
10 Control-K received during printer output
11-12 Reserved
13 End of file
14 Range error
15 Free memory not available
16l Reserved

Word 3 (fourth word) of I/O Status Block

For INP$ and OTP$ requests, word 3 contains the actual number of words
transferred or received.
NOTE: If power failure occurs, the state of the I/0 devices is not

saved. When the user restarts the system, he must again
reserve the I/0 devices before using them.

B-28 AR22

APPENDIX C
PHYSICAL I/0 DATA MODE ASSIGNMENTS

Mode
Number Data Mode
0 ASCII without checksum
1 Binary without checksum
2 Verbatim
3 ASCII with checksum for Type 5307 ASR-33,
Type 5507 ASR-35, Type 5010 Paper Tape
Reader, and Type 5210 Paper Tape Punch
only.
4 Binary with checksum for Type 5307

ASR-33, 5507 ASR-35, Type 5010 Paper Tape
Reader, and Type 5210 Paper Tape Punch
only.

AR22

PHYSICAL I/0 GENERIC DEVICE TYPE ASSIGNMENTS

APPENDIX D

Type
Number

Generic Device Type

w N = O

=
O W W N O e

=
N

[
W

KSR

Cartridge disk subsystem
High-speed paper tape reader
High-speed paper tape punch
Reserved

Card punch

Card reader

Fixed-head disk subsystem
Removable disk subsystem
Line printer

Magnetic tape subsystem
Cassette tape subsystem
ASR - Keyboard and printer
ASR - Reader and punch

AR22

APPENDIX E

SYSTEM ERROR MESSAGES

Three types of system error messages are possible in 0S8/700: 1I/O device

errors, executive errors, and communications supervisor errors. These messages

are inhibited if there is insufficient free memory.

T/0 DEVICE ERRORS

An I/0 device error generates a message with

system operator device:

SE=0eeeee dddddd

SE - Indicates an error message
OQeceeee - 6-digit octal number that specifies

dddddd - 6-digit octal number that specifies
the error

An I/0 error is identified by the high-order
equal to zero. To determine the source and cause

follows:

the following format on the

the type of error

the device that caused

(leftmost) digit of Oeeeee

of an error, proceed as

1. Convert the octal number dddddd to a 16-bit binary number and

divide it into two bytes. The left byte
device type, and is represented in Table

contains the generic
E-1 as the number in

parentheses in the "Device Type and Device in Error" column.

The right byte contains the logical unit
in error, and is represented in the same
as the "uu" value in the parentheses.

number, of the device
column in Table E-1

2. Interpret the value Oeeeee, which specifies the type of error
that occurred, by referring to the "Error Type" column in

Table E-1.

AR22

*

Table E-1. I/0 Error Codes and : 1°.gs
Generic T
Device Device Type and Error Type
Number Device in Error (Oeeeece)
(Decimal) (dddddd) (octal) (octal) Error Condition
0 KSR-33 teleprinter None
Cartridge disk 1 Missed interrupt
(4uu) 2@ Device not operational
3 Missed data (transfer rate failure)
4 Recovery error (miscellaneous)
5 Protect error on OTPS
6 Controller busy
7 DMA bus parity error
10 Checksum error
11 Segment not found
12. Fixed volume missing
13 No free memory block available
2 Paper tape reader 1 Unit disabled Que to hardware error
(10uu) 2@ Unit not operational — power off
3 Paper tape punch 1 Unit disabled due to hardware error
(14uu) 28 Not operational — power off
3 Tape low
5 Card punch 12 Missed interrupt
(24uu) 28 Device not operational
3 Punch check error
4 Data access error
7 No free memory block available for
data conversion
10 Controller failed to respond
11 Retry failed
12 Operator action timer timed out
6 Card reader 12 Missed interrupt
(30uu) 22 Device not operational
42 Data access error
52 Read cycle error
62 Invalid Hollerith code
7 No free memory block available for
data conversion
10 Unit disabled error (Type 5100 only)
Controller failed to respond
11 Stacker full or hopper empty (Type
5100 only)
Retry failed
12 Registration error (Type 5100 only)
Operator action timer timed out
13 Correct column option settings

Table E-1 (cont).

I/0 Error Codes and Meanings

Generic

Device

Number
(Decimal)

Device Type and
Device in Error
(dddddd) (octal)

Error Type
(Oeeeee)
(octal)

Error Condition

7

Fixed-head disk
(34uu)

a

a

Missed interrupt
Device not operational
Access error

Recovery error
Protect error

Parity error

Removable disk
(40uu)

HlN s W N

a

(DMC only)
a

a

S U W N

(DMC only)
7
10
11

Missed interrupt

Device not operational
Missed data

Recovery error

Protect error

Controller busy

Bus parity error
Checksum error

Segment not found

Line printer
(44uu)

Unit disabled due to hardware error

Device not operational

10

Magnetic tape unit
(50uu)

w N N

P O ~N o6

T

Missed interrupt
Device not operational

Operator failed to make device opera-
tional

Operator failed to permit writing
Writing not permitted

controller busy

Write parity error

Read parity error

Hardware error (Types 4041 and 4051

only)

11

Cassette tape

(=]

w

R B A R ¥)

10

Missed interrupt
Device not operational

Operator failed to make device opera-
tional

Operator failed to permit writing
Writing not permitted

Controller busy or not operational
Write parity or access error

Read parity or access error

12

ASR-33 teleprinter

None

13

ASR-35 teleprinter

None

8 The system allows the operator several minutes to recover from this error.

E-3

ARZ2

EXECUTIVE ERRORS

Executive errors have two formats:

SE=1fffff ssssss
SE=1fffff ssssss actnam

SE - Indicates system error
1fffff and ssssss - 6-digit octal numbers

actnam - 6-character ASCII string specifying the name of
the activity that was executing or requested
when the error occurred.

Executive errors are indicated by the high-order (leftmost) digit of 1fffff
equal to 1. The activity name is printed only for certain errors, which are

specified in Table E-2.
In all cases, ssssss, which is called the second error code indicator, is
meaningful only for certain errors, as shown in Table E-2. When the second

indicator is not meaningful, siz zeros are printed.

Table E-2. Executive Error Codes and Meanings

Error Code Meaning

100001 In a COS, indicates that $SA or $LA command was being executed
when another such command was entered. Wait for present func- —
tion to be completed before typing another command. In a DOS,
system failed to schedule an activity as requested by $SA com-
mand, either because activity did not exist or because error
occurred in scheduling process or while under CI mode, a com-
mand other than $TR was typed on the console. Second error
code indicator contains the ASCII characters "OI" ('147711).

100002 Operator typed a line which, subsequent to the initial (P), had
neither a dollar sign (indicating system command) nor a valid
message number (one associated with an unanswered message).

The line is ignored. Second error code indicator contains the
ASCII characters "OI" ('147711).

100003 Console I/0 error occurred during operator typein; usually

means operator waited too long to complete typing in a line
once the (P) was typed. The line is ignored. Second error
code indicator contains the ASCII characters "OI" ('147711).

100004 Operator's response to system or activity message contained too
many characters. The line is ignored. Second error code
indicator contains the ASCII characters "OI" ('147711).

100005 The text following a typein of (P)$ was invalid system command.
(The set of valid system commands varies. In a nondedicated
COS, S$SA and SLA are valid. 1In a DOS, $SA is valid. If com-
mand input mode is configured, $SCI and $TR are valid. If
system integrity is configured, $AB is valid. Dedicated COS
recognize no system commands.) Second error code indicator
contains the ASCII characters "OI" ('147711).

100006 The abort activity request which was made by the operator ($AB)
is invalid because either the activity is nonrestricted or the
activity was not requested. Second error code indicator con-
tains the ASCII characters "OI" ('147711).

E-4 AR22

Table E-2 {cont). Executive Error Codes and Meanings

Error Code

Meaning

100010

The file or activity could not be deleted because of dealloca-
tion error. The volume name is also specified.

100013

No free memory available to disk initialization.

100021

No work area available for allocation in either system or user
area on volume. Operator should write "volume full" or "volume
user area full" on appropriate disk volume.

100022

Disk error during disk initialization. Second indicator
specifies disk unit number.

100024

Overlay cannot be read into main memory. Second indicator con-
tains starting segment number of desired overlay.

100030

Activity area overrun. Activity name is specified with error
indicators.

100031

Activity supervisor disk error while reading activity. Name of
activity is specified.

100116

Specified activity name not found in the activity directory.
Second indicator contains function number of Connect Clock
Activity function. Activity name also specified.

100122

Disk error while referencing the disk activity directory.
Second indicator contains function number of Connect Clock
Activity function. Activity name also specified.

100126

No activity area for the named activity (the main-memory
starting address given in the disk directory is not equal to
the beginning of any activity area) or the activity is too
large to fit into the allocated activity area (i.e., the
activity ending address exceeds the activity area ending
address) . Second indicator contains function number of Connect
Clock Activity function. Activity name also specified.

100163

No work area available for allocation in user area on volume.
Operator should write "volume full" or "volume user area full"
on appropriate disk volume.

100210

CI failed to get the next line in the CI command file and CI
mode terminated. The GETS$ function took the error return and
'ssssss' contains the A-register setting. See Appendix A,
Executive Function Call Error Codes.

100211

CcI was unable to open the file specified in the $CI command and
CI mode terminated. The OPN$ function took the error return
and 'ssssss' contains the A-register setting. See Appendix A,
Executive Function Call Error Codes.

100212

If 'ssssss' contains OI in ASCII ('147711), a $SA command
attempted to start a second activity under CI control and CI
mode terminated. If ‘'ssssss' does not contain 0I, CI was

unable to schedule the activity in a $SA command in the command
file. The SACS function took the error return and 'ssssss' con-
tains the A-register setting. See Appendix A, Executive Func-
tion Call Error Codes. -

100213

CI was unable to close the CI command file and CI mode
terminated. The CLSS function took the error return and
'ssssss' contains the A-register setting. See Appendix A,

Executive Function Call Error Codes.

E-5 AR22

Table E-2 (cont). Executive Error Code< an.j Menings

Error Code Meaning

100214 syntax error in a system command:
Invalid command in a CI command fiic
Filename following $CI is too long

Activity name following $SA on console is too long

e o o o

No initial $ in a command file line when no activity is
running under CI control and a response line is not expected
and CI mode terminated.

'ssssss’ is OI in ASCII ('147711) .

100215 The activity name following $SA in a CI command file is too
long and CI mode terminated. 'ssssss' is OI in ASCII ('147711).

100216 The response line in a CI command file is longer than the
activity, running under CI control, expects and CI mode
terminated. 'ssssss’' is OI in ASCII ('147711).

100217 CI was unable to release the old output device while processing

a $0D command and CI mode terminated. The REL$ function took
the error return and 'ssssss' contains the A-register setting.
See Appendix A, Executive Function Call Error Codes.

100220 CI was unable to reserve the new output device while processing |
a $0D command and CI mode terminated. The RSVS function took l
the error return and 'ssssss' contains the A-register setting. j
See Appendix A, Executive Function Call Error Codes. |

100221 The device specified in a $OD command is not configured and CI |
mode terminated. 'ssssss' contains OI in ASCII ('147711).

100222 CI encountered a bad I/0 status on return from the OTPS func-
tion when writing a record to the current output device and CI
mode terminated. 'ssssss' contains word 1 of the physical 1/0

status block. See Appendix B, Physical I/0 Device Information.

100223 CI was unable to output a record tc the current output device
and CI mode terminated. The OTP$ function took the error
return and 'ssssss' contains the A-register setting. See
Appendix A, Executive Function Call Error Codes.

COMMUNICATIONS SUPERVISOR MESSAGES

The 0S/700 Communications Supervisor issues system error messages on the
console in two formats. They are: communications Supervisor event reports
(CSEVRT), and communications supervisor configuration errors (CSCNFE). Each is
identified by the 6-letter code word in the activity name field of the system

error message.

Event Report (CSEVRT)

A communications supervisor event report message reports changes in the

status of the communications subsystem in the following format:

SE= XxXXXXX yyyyyy CSEVRT

E-6 AR22

The octal value xxxxxx is treated as a 16-bit binary number.

Bit 1 indicates:

0 - User program command response

1 - Alarm condition response

Bits 2 and 3 contain internal information.

Bits 4 through 8 contain an octal message code specified in

Table E-3.
Bits 9 through 16 may contain additional information. See
Table E-3.
2. éngerpretation of yyyyyy depends on the message code. See Table
Table E-3. Communications Supervisor Message Codes
Code Parameter 2 Parameter 2 Parameter 1
Bits 4-8 CSEVRT CSCNFE Bits 9-16
Sf orouxiIxX Message Type (YYyyyy) (YYyyYyy) of xxxxxx
01l Device State Change DLT
04 System Status Ssw SSW
06 Device Failure DLT LTA
07 Free Core Alarm SSW SSW
10 Line Status LSW DLT
1 Terminal Status TSW TSW
12 Format Error Parameter 28
13 Line State Change DLT
14 Terminal State Change DLT
15 Device Enabled DLT DLT
16 Line Alarm DLT LTA See Figure E-6.
21 Discipline Failure DLT LTA See Figure E-7.
22 Device Looped DLT DTA
23 Device Unlooped DLT DTA
24 Line Poll Failure DLT LTA See Figure E-8.
25 Line Select Fail DLT LTA See Figure E-8.
26 Output Select Fail DLT LTA See Figure E-8.
27 Device Status DTA
30 VIP Status DLT LTA See Figure E-9.
DTA - Device Table Address
LTA - Line Table Address
DLT - Device/Line,/Terminal Number {(See Figure E-5.)
5SW - System Status Word (See Figure E-4.)
DSW - Device Status Word (See Figure E-1.)
LSW - Line Status Word (See Figure E-2.)
TSW - Terminal Status Word (See Figure E-3.)
?;T}'ffl?.f'! iral user parameter is given.]
E-7 ARZ2Z

Configuration Errors (CSCNFE)

A communications supervisor configuration error uessage has the format:
SE= XXXXXX YYYYYY CSCNFF

This message indicates that a processing request to the communications super-
visor cannot be completed because a required communications supervisor function
is not configured. The two octal numbers xxxxxx and yyyyyy contain the original
communications supervisor parameters for calls that were not completed due to
the unconfigured function. Values are interpreted as follows:
1. The xxxxXxx is treated as a l6-bit binary number.

Bit 1 indicates that the requested function was for:

0 - A communications supervisor command

1 - An alarm condition processor ‘

Bits 2 and 3 contain internal information.

Bits 4 through 8 contain an octal message code specified in Table

E-3.
Bits 9 through 16 may contain additional information. See Table
E-3.

2. Interpretation of yyyyyy depends on the message code. See Table
E-3. ’

Status Word Formats

1 4 5 6 7 8 9 16
T)
|]
RESERVED | | RESERVED
1 1
1 1
t—f - Device disabled
Skip poll

Output hold

Device looped

Figure E-1. Device Status Word

P

E-8 AR22

answer disabled

1 2 3 4 5 6 7 8 9 10 16
RESERVED
8 4 4 *
Auto
Line stuck

Output hold

Line
Skip
Line
Line
Line
Line

Figure E-2. Line Status Word

1 3 4 5 6 7 8 9

disconnected
poll

on hold
looped
disabled

open

16

Poll

failure

Input select failure

Output select failure

Poll

disable

Select disable

Figure E-3. Terminal Status Word

AR22

l1 2 3 4 5 6 7 8 91011 12 13 14 15 16

* ‘ ? * ‘ l. Second free memory
15 Device 7 disabled
14 Device 6 disabled
13) looped }
{13} pevice laoereea
11\ . {looped ‘
{10} Device 4 dteonlea)
9) looped }
{8} Device 3 {309Pod o}
7} . {looped }
e} Device 2 disabled
5 . looped }
{4} Device 1 {disabled.
3] . {looped }
{2¢ Device 0 }4isablea
1 First free memory

threshold passed

Figure E-4. System Status Word

1 3 4 10 11 16

e —

T [11 - 16 Terminal number

4 - 10 Line number
1 -3 Device number

Figure E-5. Device/Line/Terminal Number Word

E-10 . AR22

4 5 6 7 8 9 10 11 12 13 14 15 16

X I ‘ t Line stuck
Queue empty
Line disconnected

Skip poll

Line output hold
Line looped

Line disabled
Line open

Message type ('16)

Alarm flag (=1)

Figure E-6. Parameter 1 of Line Alarm Message

4 5 6 7 8 910 11 12 13 14

| I | .

Underrun
Slave ENQ limit

Slave NAK limit
Master ENQ limit

Master NAK limit
Message type (='21)
Alarm flag (=1)

Figure E-7. Parameter 1 of Discipline Failure Message

9-16 Terminal number

N

4-8 Message type

1 Alarm flag (=1)

Figure E-8. Parameter 1 of Line Poll Failure, Line Select
Failure-Output, Line Select Failure-Input
Messages

E-11

AR22

6 7 8 910 11 12 13 14 15 16

T T T T ———
A

.

- 16

9 - 10

-3
1
e o]

Terminal Number from
DLT (equal to O if
Bits 9 - 10 = 3)

Detected Error
Condition
0 - Unexpected ACK

1 - Unexpected NAK

2 - Illegal Message
Type

3 - Illegal Terminal
Number

Message Type ('30)

Alarm Flag = 1

Figure E-9. Parameter 1 of VIP Status Message

AR22

APPENDIX F
ACTIVITY ABORT MESSAGES

An activity abort message occurs whenever the system or the operator

a restricted activity. The format is:

*kkk** {actnam> <rr> [<'aaaaaa’]

<actnam® - l- to 6-character ASCII name of the restricted activity

which was aborted.

<rr> - 2-character abbreviation of the reason for the abort.

See Table F-1.

<'aaaaaa> - Address printed if <rr> is MV, BP or IF.

Output of the message is suppressed if free memory is very low.

Table F-1 contains the reasons for the activity abort.

Table F-1. Reason for Abort

aborts

{rr>

Meaning

FC

Free memory is low.

OoP

Abort was requested by the operator ($AB command) or by a non-
restricted activity (ABTS executive function call).

MV

A memory lockout violation occurred:

e An attempt to write in a protected area of memory (STA, DST,
STX, LDX, IMA, IRS, and JST).

e An illegal instruction (HLT, INH, INA, IMK, ora, OTK, OCPp,
SKS, SMK, and CAI) .

e More than eight levels of indirect addressing.

('aaaaaa> contains the address where the memory lockout viola-
tion occurred.

BP

A bad parameter was passed to an action routine.

e A word or block specified directly or indirectly by the
parameter list does not reside entirely in the activity.

e The FCBB or LCBB pointer specified by the FCB or LCB is not
the one given to the activity by the system when the activity
opened the file or library.

('aaaaaa> contains the address of the function number of the
executive function called.

F-1 AR22

Table F-1 (cont). Reason for .. .rc:
{rr> Meaning]
IF An illegal function was requested

is not:

® Not a permissible function.

EOF$, INPS$, OTPS
RWDS, SPF$, SPRS
ULDS$, WIOS.

See Tables F-2

® A TMTS$ request with no other task of the activity scheduled.
e A TMAS$ request with a bad TCB.

® A WIOS request with no I/O request pending or no queued
reserve request waiting.

® One or more I/0 requests pending and the function requested

, F-3.

The subset of executive functions which may be requested by Restricted

Activities is listed in Table F-2.’

Table F-2. Permissible Functions

Function Meaning

ALCS Allocate a work area

ATQS Attach entry to queue

CFPS$ Change file password

CLL$S Close library

CLP$ Change library password

CLS$ Close file

CRLS Create library

CRQS Create queue

CVLS$ Connect volume

DLCS$ Deallocate a work area

DVLS$ Disconnect volume

EOF$ End of file

GDTS$ Get date and time

GETS Get a record

GSP$ Get system parameters

GTQS Get top entry from queue

INPS Input

OPLS Open library

OPNS$ Open file

OTPS$ Output

PUTS Put a record

RELS Release a device

RSVS Reserve a device

RWD3 Rewind

SACS Schedule an activity

F-2

AR22

Table F-2 (cont). Permissible Functions

Function Meaning
SPFS$ Space file
SPRS Space record
STSS Schedule task
SuUSs Suspend task
TMAS Terminate an activity
TMTS Terminate task
TPRS Type a message and input a response
TYPS Type a message
ULD$ Unload (Rewind with automatic release)
WIOS Wait for I/O completion

Executive functions that may not be requested by Restricted Activities are
listed in Table F-3.

Table F-3. Nonpermissible Functions

Function Meaning
ABTS Abort activity
CCAS Connect clock to activity
CCLS Connect clock to task

CCSsss Change station status

CCSTS$ Connect station

CDSTS Disconnect station

CGCBS$ Get communications block
CGSSS$ Get station status

CRARS Receive and reformat

CRASS Reformat and send

CRCBS$ Return communications block
CRECS Receive

CSDCS$ Send control

CSND$S Send

CTCS Create a task control block

CTMCS Terminate communication task

DCAS Disconnect activity from clock
DCLS$ Disconnect task from clock
GBLS Get storage block

RBLS Return storage block

SDT$ Set date and time

STCS Schedule a task control block

F-3 AR22

APPENDIX G
FREE MEMORY BLOCK PARAMETER PASSING TECHNIQUE

The format of the parameter passing technique used by FORTRAN under 0S/700
when using free memory blocks involves the TCB format., parameter block format,
parameter format, and data structure.

TCB FORMAT

Use of the free memory block parameter passing technique is designated
whenever the TCB has the following format:

Word Relative
Displacement Symbol Contents

ZTCBP1 Must be zero. This is parameter 1
in the SACS$, STSS$, CTC$, CCAS, or
CCL$ executive function call.

2TCBP2 Points to the first word of the
block containing the actual param-
eters. This is parameter 2 in the
SACS, STSS$, CTCS, CCAS, or CCLS
executive function call.

PARAMETER BLOCK FORMAT

The block containing the actual parameters has the following format (see
Figure G-1):

Word Number ‘ Contents
0 Reserved
1 Reserved
2 Parameter block size descriptor.
Bit Contents
1 Block release control:

0 - Release block to free
memory when done.

1 - Don't release block to
free memory when done.

2-8 Must be zero.

9-16 Parameter block size in number
of words. (NOTE: it is not
expressed as a power of 2).

3 Parameter block descriptor.

G-1 AR22

Bit Cor:_snts

1-8 Reserved for parameter passing
technique type. Must be zero
(this is technique 0).

9-16 Number of dwz:a words in the
parameter block. This is a
count of the number of following
words which actually contain
parameter data.

4-n Parameter data.

Example:

The Start Activity online utility program (SA) allows a user to input
an ASCII line in a 64-word parameter block in standard format. The
option to accept a parameter line must be specified to the Load
Activity (LA) command when the activity is loaded. When the Start
Activity command starts such a program, the Start Activity command will
output the following message to the operator's console:

PARAMETERS !

The user response line (UVWXYZA<CR>, for example) will be used as the
first and only parameter in a 64-word parameter block as follows:

Word Number Octal Contents Meaning
0 0 Reserved
1 0 Reserved
2 100 64-word block to be returned
3 5 Five words of data
4 4 Four words for parameter 1
5 152726 uv
6 153730 WX
7 154732 YZ
8 140615 ALCR>
9 through 63 Unused

PARAMETER FORMAT

Each parameter in the parameter block has the following format:

Word Number Contents
0 Parameter descriptor.
Bits Contents
1-8 Reserved for parameter type.
Must be zero (this is type
0).
9-16 Number of data words in the

parameter. This count does
not include this word itself.
1 First word of actual parameter.

2 Second word of actual parameter (if more than
one word).

3 Third word of actual parameter (if more than
two words).

G-2 AR22

TCB

0

1

2

3 0

4 POINTER TO PARAMETER BLOCK

5

6

7

PARAMETER BLOCK

0 RESERVED

1 RESERVED

2 |R 0 BLOCK SIZE
3 0 NUMBER DATA WORDS

NUMBER PARAMETER

4 0 WORDS

5 WORD 1 PARAMETER 1

NUMBER PARAMETER
WORDS

WORD 1 PARAMETER n

END OF BLOCK

Figure G-1. Parameter Block Data Structure

G-3 AR22

APPENDIX H
0S/700 DATA STRUCTURES

This appendix describes the organization and contents of those date struc-

tures referenced by user programs.

ACTIVITY CONTROL BLOCK (ACB)

Each activity executed under the control of 0S5/700 is defined by an
activity control block (ACB). The ACB defines the activity attributes common
to all tasks within an activity. Figure H-1 shows the organization and contents
of the ACB.

Word

Activity Control Block Number Contents

RRAD LINK WORD 0 Pointer to next ACB in the resident or
requested activity directory, or 0 if
end of directory.

ACTIVITY STARTING 1 Lead task entry point; used in

ADDRESS . generating the primary TCB.
ACTIVITY J-BASE 2 See Table H-1.
AND FLAGS

ACTIVITY NAME 3 Characters 1 and 2 of the activity
name.

CHAR 1 |CHAR 2

ACTIVITY NAME 4 ‘Characters 3 and 4 of the activity
name.

CHAR 3 | CHAR 4

ACTIVITY NAME 5 Characters 5 and 6 of the activity
name.

CHAR 5 | CHAR 6

ACTIVITY DEFAULT 6 Bit 1 is a system flag; bits 2 through

PRIORITY LEVEL 4 equal zero, bits 5 through 8 contain

the default priority level, bits 9
through 16 equal zero.

ACTIVITY STATUS WORD 7 See Table H-2.

START OF ACTIVITY 8 Starting address of the gueue which

REQUEST QUEUE contains the TCB's for all requests
‘ made on the activity.

Figure H-1. Activity Control Block (ACB) Structure

H-1 AR22

Word

Activity Control Block Number
ACTIVITY AREA TABLE 9
ACTIVITY AREA REQUEST 10
QUEUE
FIRST SEGMENT NUMBER 11
OF THE ACTIVITY
LAST SEGMENT NUMBER OF 12
THE ACTIVITY
NUMBER OF WORDS IN THE 13
LAST SEGMENT OF THE
ACTIVITY
ACTIVITY KEY REGISTER 14
SPECIAL ACTION TCB 15

POINTER

Contents

Pointer to the Activity Area Table
entry for the uctivity area used by the
activity. For a COS or a permanently
memory-resident activity, this word
contains a pointer to word 11 of the
ACB.

If bit 1 is 1, the ACB is not linked in
the Activity Area Request Queue (the
header word for this queue is in the
Activity Area Table entry). The ACB is
added to this queue, and bit 1 is set
to zero when the activity is to be
loaded. If bit 1 is zero, bits 2
through 16 contain either zero to indi-
cate the end of the queue, or the
pointer to an ACB of another activity
which is waiting to be loaded in the
same activity area.

The first segment number specifies
where the activity begins on the disk.
For a COS or a permanently memory-
resident activity, this word contains
the starting address of the activity
area.

The last segment number specifies where
the activity ends on the disk. For a
COS or a permanently memory-resident
activity, this word contains the ending
address of the activity area.

This word specifies the number of words
used to contain the activity in the
last segment on the disk. For a COS or
a permanently memory-resident activity,
this word equals zero.

The default keys of the activity.

Pointer to the "CB associated with a
user-supplied :race routine.

Figure H-1 (cont).

Activity Control Block (ACB) Structure

(Table H-1 lists the contents of the activity J-base and flags word/word

of the ACB structure).

Table H-2 lists the contents of the activity status word (word 7 of the

ACB structure).

H-2 AR22

Table H-1. Activity J-Base and Flags (Word 2 of the

Bit Interpretation
1-7 Activity J-base sector.
8-10 | Reserved for use by abort task.
11 Abort flag (restricted activities only)
Bit 11 = 1; activity is being aborted.
12 Activity being loaded indicator

Bit 12 = 1; activity is being loaded.

13 Open files indicator (restricted activities only)

Bit 13 = 0; all open files will be preserved
if activity is aborted or termi-
nates prematurely.

Bit 13 = 1; files being created will be
deleted if activity is aborted
or terminates prematurely.

14-15 | Initial A-bank.
16 Restricted mode flag

Bit 16 = 1; restricted activity.

H-3

AR22

Table H-2. Activity Status Word (Word 7 »f the ACwL)

Bit Interpretation
1-2 Activity type:
Bits 1 and 2 = 0027 activity is not reusable.
Bits 1 and 2 = 0127 activity is not reusable.
Bits 1 and 2 = 102; activity is reentrant.
Bits 1 and 2 = 112; activity is reusable.
3 ACB status:
Bit 3 = 0; ACB is not complete.
Bit 3 = 1; ACB is complete.
4 Activity residency status:

Bit 4 = 0; activity is disk-resident.

Bit 4 = 1; activity is permanently resident in
main memory.

5 Activity current memory residency status:

Bit 5 = 0; activity is not currently resident in
main memory.

Bit 5 = 1; activity is currently resident in main
memory.

6 Activity scheduling status:
Bit 6 = 0; activity is not scheduled.

Bit 6 = 1; activity is already scheduled. Addi-
tional scheduling requests are queued.

7 ACB residency status:
Bit 7 = 0; not permanently memory-resident.

8 Reserved.

9-16 Activity request counter:

This count is incremented every time the activity
is requested, and decrementc ' every time execu-
tion of the activity termir +es. For a COS this
field is zero.

CLOCK TASK CONTROL BLOCK {(CLOCK TCB)

When a task is connected to a clock, the user must provide a clock task
control block. The clock task control block is used to define and control the
task connected to the clock. Figure H-2 illustrates the organization and
contents of the clock TCB.

H-4 AR22

Clock TCB Word Number Contents

RESERVED

TIMER WORD

POINTER TO THE
TIME-OUT ROUTINE

USER PARAMETER 1

USER PARAMETER 2

CONTROL FLAGS

RESERVED

ACB ADDRESS

0

1 Bits 1 through 4: time units (see
Table H-3); bits 5 through 16:
integer number of time units from
now until the activity is to be
scheduled. A time interval of zero
indicates that the TCB is currently
inactive.

2 Address of the user-supplied time-
out routine, which is executed
after the time interval has
elapsed.

3

4

5 Task control flags (see Table H-4).

6

7 Pointer to the ACB of the activity

that contains the clock task;

if this is a system task.

Figure H-2.

Clock Task Control Block (Clock TCB)

Table H-3. Time Unit Vvalues

Bit Interpretation
1 Bit 1 = 1; use the millisecond timer.
2 Bit 2 = 1; use the half-second timer.
3 Bit 3 = 1; use the second timer.
4 Bit 4 = 1; use the minute timer.
NOTES: 1. When more than one timer is

indicated, the leftmost bit
will be used to determine the
timer to be used. Bits 5§
through 16 represent the
integer number of time units
from now 'until the task is to
be executed.

The millisecond timer is incre-
mented at each software clock
interval (approximately 16.7
milliseconds). If the milli-
second timer is specified, and
the number of time units speci-
fied is not a multiple of the
software clock, the number of
time units is rounded down to
the next lower multiple of

16.7 milliseconds.

AR22

Table H-4 lists the control flags of the clock T3 and their meaning.

Table H-4. Clock TCB Control Flags

.-

Control Flayg Meaning
Bit 1 Bit 1 = 1; task is to be cyclic.
Bit 2 Bit 2 = 0; time-out routine is to be scheduled
by 0S/700.
Bit 2 = 1; immediate execution of the task is
required.
Bits 3-4 Unused.
Bits 5-8 Priority level of the time-out routine if

scheduling is specified.

Bits 9-12 TCB type: zero implies a system request and no ACB
pointer in word 7 of the clock TCB; 1 implies an
activity request with an ACB pointer in word 7 of
the clock TCB; 2 implies a system request on behalf
of a user, and word 7 contains an ACB pointer.

Bits 13-16 Unused.

Clock TCB (After Connection to a Clock Queue)

After a clock TCB has been connected to one of the clock gqueues, three
words of the clock TCB are modified and one word is initialized. The words
modified or initialized are as follows:

Word 0 - This word used to link the clock TCB to the proper clock
queue.

Word 1 - This word is converted to the internal clock manager format.
The number of time units is made negative and is used as the
- running timer.

Word 5 - Bits 1 through 4 of the word 1 are copied into bits 13
through 16 of word 5; thus, bits 13 through 16 act as queue
pointers for the clock disconnect functions.

Word 6 If cyclic scheduling is specified (bit of word 1 is non-
zero), word 6 is set to the timer resec value; otherwise,
word 6 is set to zero. The timer reset value is a copy of
the original negative value contained in word 1 after

internal conversion.

DATE/TIME BLOCK

The date/time block contains today's date and the current time coded in
ASCII. Today's date is expressed as ddmmyy; dd is the day of the month, mm is
the month, and yy is the year. Current time is expressed in hours and minutes,
based on a 24-hour clock; e.g., 7:00 PM is 1900. Figure H-3 shows the organi-

zation and content of the date/time block.

H-6 AR22

Date/Time Block Word Number Contents
HOURS 0 Current hour (00 through 23).
MINUTES 1 current minute (00 through 59).
BLANK | BLANK 2
CHAR. | CHAR.
DAY 3 current day of the month (01 through
31).

MONTH 4 Current month (01 through 12).

YEAR 5 Current year (xx through 99); xx is
the year in which system configura-
tion was performed. The current
year cannot be set to earlier than
the year of system configuration.

Figure H-3. Date/Time Block Structure

DEVICE CONTROL BLOCK (DCB)

The device control block (DCB) contains information required for the control

of physical I/0 operations.
used in physical I/O operations.
contents of the DCB.

The user must create a DCB for each device to be
Figure H-4 illustrates the organization and

Word Number

Contents

Device Control Block
RESERVED 0
o GENERIC DEVICE 1
TYPE
UNIT NUMBER 2
DATA MODE 3
USER IDENTIFIER 4
ADDRESS OF THE I/0 5
STATUS BLOCK
I/0 COMPLETION . 6
RETURN ADDRESS

See Appendix D, "Physical I/0
Generic Device Type Assign-
ments."

The logical unit number
assigned to this I/O device.

SO
See Appendix C, "Physical 1/0
Data Mode Assignments."

A 16-bit word identifying the
user.

Address of the 1I/0 status
block.

address to which control is
returned at the completion of
the I/0 operation.

Figure H-4.

Device Control Block (DCB) Structure

AR22

QUEUE HEADER

A queue header consists of two words; the first word contains a pointer to
the first entry in the queue and the second word contains a pointer to the .ast
entry in the queue. An empty queue is indicated by 21 zero value in both words.

Figure H-5 illustrates the organization and contents of the queue header.

Word
User Queue Header Number Contents
FIRST ENTRY POINTER 0 Pointer to the first entry in the
queue; zero if the queue is empty.
LAST ENTRY POINTER 1 Pointer to the last entry in the
queue; zero if the gqueue is empty.

Figure H-5. User Queue Header Structure

SUSPENDED SAVE AREA

Suspended save areas are reserved for system use; the user programs should
not alter or modify any information contained in a suspended save area. It is
presented here to familiarize the user executive with its contents, which are
used to restart interrupted tasks and to save registers through a function call.
The organization and contents of a suspended save area are illustrated in Figure
H-6.

Word

Suspended Save Area Number Contents
X-REGISTER 0 X-register value at time of interrupt.
A-REGISTER 1 A-register value at time of interrupt.
KEYS 2 - Value of keys at tir of interrupt.
B-REGISTER 3 B-register value at time of ihterrupt.
P-REGISTER ‘ 4 P-register value at time of interrupt. If

bit 1 = 1, the contents of the pseudoregisters

have been saved.
ZCR1 5 Value in pseudoregister 1 at time of interrupt.
ZCR2 6 Value in pseudoregister 2 at time of interrupt.
ZCR3 7 Value in pseudoregister 3 at time of interrupt.
ZCR4 8 Value in pseudoregister 4 at time of interrupt.
ZCR5 9 Value in pseudoregister 5 at time of interrupt.
ZCR6 10 Value in pseudoregister 6 at time of interrupt.

Figure H-6. Suspended Save Area Structure

H-8 : AR22

Word

Suspended Save Area Number
START OF QUEUE 11
END OF QUEUE 12
S~-REGISTER 13
ZAAREG 14
ZARREG 15
ZALREG 16
BANKS 17
USER'S KEYS 18
USER'S B-REGISTER 19
USER'S S-REGISTER 20
USER'S BANKS 21

. - 14
ZUSTK 22
ZTM1 23 '
ZTM2 24
ZTM3 25
Z2TM4 26

Contents

Pointer to first TCB scheduled and waiting to
be dispatched on this level.

Pointer to last TCB scheduled and waiting to
be dispatched on this level.

S-register value at time of interrupt.

Value in ZAAREG at time of interrupt. (This
register in a fixed memory location containing
the ACB address of the activity currently
executing {(zero if a system task is executing).
If bit 16 = 1, an executive function is being
executed on behalf of the activity; if bit 1 =
1, it is a disk-resident executive function.

Value in ZARREG at time of interrupt. (This
register is a fixed memory location containing
the address at which return is to be made to
the caller from a currently executing executive
function.)

Value in ZALREG at time of interrupt. (This
register is a fixed memory location containing
the address of the caller's parameter list for
a currently executing executive function.)

Value in Bank State Register and indexing mode
(32K or 64K) at time of interrupt (64K systems
only, otherwise zero).

User's keys saved through executive function
call. .

Value in user's B-register saved through execu-
tive function call.

Value in user's S-register saved through execu-
tive function call.

Value in user's Bank State Register and user's
indexing mode (32K or 64K) saved through execu-
tive function call (64K systems only, otherwise
zero) .- 4

Pointer to chain of register save blocks for
multilevel executive function call.

Temporary to save caller's keys on multilevel
executive function call. .

Temporary to save caller's B-register on multi-
level executive function call.

Temporary to save caller's S-register on multi-
level executive function call.

Temporary to save caller's banks and indexing
mode on multilevel executive function call.

Figure H-6 (cont).

Suspended Save Area Structure

H-9 AR22

Word

Suspended Save Area Number Ccntents
ZTMS 27 Temporary to save ~aller's parameter list
address on multilevel executive function call.
28 Reserved.
29 Reserved.
Figure H-6 (cont). Suspended Save Area Structure
TASK CONTROL BLOCK (TCB)

block

Each task executed under the control of 0S/700 is defined by a task control

(TCB). The TCB contains information required for the control of the task.

The organization and contents of the TCB are shown in Figure H-7.

(word

Word
Task Control Block Number Contents

LINK WORD 0 Used for queuing scheduled TCB's.

RESERVED 1 See SACS$ function description.

TASK ENTRY ADDRESS 2 If bit 1 = 0; enter task by a JMP.
If bit 1 = 1; enter task by a JST.

USER PARAMETER 1 3

USER PARAMETER 2 4

CONTROL WORD 5 See Table H-5.

RESERVED 6 See SACS$ function description.

ACB ADDRESS 7 Pointer to the ACB of the activity
which contains the task. If this
word is zero, t .e task is a system
task.

Figure H~7. Task Control Block (TCB) Structure

Table H-5 describes the fields within the task control block control word

5 of the TCB).

H-10 AR22

Table H-5. Task Control Block Control Word

Bit

Meaning

Reserved for 0S/700 use.

Canned TCB flag; indicates that TCB is not
returnable to free memory.

Schedule interlock flag.

Task priority level.

TCB type:

0 implies a system request and no ACB
pointer in word 7.

1l implies a user request, and word 7 con-
tains an ACB pointer.

2 implies a system request on behalf of a
user, and wo;d 7 contains an ACB pointer.

13-16

Reserved for 0S/700 use.

AR22

Honeywell Bull

Technical Publications Remarks Form* (please print)

~ Title:
SYSTEM 700 EXECUTIVE 0S/700

|

Order : Dated :

61A.2-AR22,Rev.0 JULY 1975

Errors in publication:

Suggestions for improvement to publication:

from : Name
Company
Title
Address

* Your comments will be promptly investigated by appropriate technical personnel, action will be taken as required, and you will receive
a written reply. If you do not require. a written reply, please check here : D

——————)——————-CUTALONGLINE ———— e)-——-—-————-—————————————————————-

Please hand this technical pubiication remark form
to your Honeywell Bull representative,

or mail to :

Honeywell Bull
Marketing Communications

Documentation/Publications

94, avenue Gambetta
75960 PARIS CEDEX 20 - FRANCE

Honeywell Buil

HONEYWELL INFORMATION SYSTEMS

Ref.: 61 A.2 - AR22. Rev. 0

Afotek 01-76 (615)

	AR221
	AR222
	AR223
	AR224
	AR225
	AR226
	AR227

