DAP MANUAL

FOR 16-BIT DDP COMPUTERS

00255 101400 SMI

00256 0 01 00265 JMP

00257 -0 10 00000 €ALL

00260 0 04 00825 & . sTA

00261 - 000201 ‘ " IAB

00262 . 0 04 00326 STA AL

00263 ™0Fe). 0034/ . LDA =
00264 0 01 00271 JMP POSB
00265 0 04 00325 STA XH

00266 000201 IAB

00267 0 04 00326 STAE XL

00270 140040 CRA

00271 0 04 00336 STA COMM +2
00272 0 02 00254 LDA POS
00273 0 0700350 SUB &2
00274 04700 i STA RETN
00275 2-00 LDA%¥ RETN
00276+ "4 L stal REIN
00277 LDA* RETN
00300 04 00334 STA COMM -
00301 0.06 00345 ADD =

00302 04 00335 STA COMM + 1
00303 -0 02 00335 LDA*x . COMM=-1
00304 000201 IAB .

00305 ~0.02 00334 LDA* COMM
00306 101400 SMI

00307 0 01 00316 JMP POSC
00310 —0 1000000 €ALL - TWOS
00311 0 04 00327 _STA YH

00312 000201 IAB

00313 0 04 00330 - STA YL

00314 140040 CRA

00315 0 01 00322 SRy ROSD
00316 ¢ 0-04 00327. POSCTISTA vh.

00317 000201 IAB

00320 0 04 00330 STA YL

00321 0 02 00347 LDA e
00322 0 06 00336 ADD COMM + 2
00323 0 04 00336 STA COMM + 2

Honeywell

DAP-16 MANUAL

for the
DDP-116, DDP-416, and DDP-516

General Purpose Computers

December 1966

Honeywell

COMPUTER CONTROL DIVISION

Doc. No. 130071629
M-1018

COPYRIGHT 1966 by Honeywell Inc., Computer Control Division,
Fr of this publication may not be
reproduced in any form in whole or in part, without permission of the
copyright owner. All rights reserved.

Printed in U.K. COPIA PRODUCTUM, HARROW.

Purpose of DAP-16
Modes of Operation
Assembly Process

Two-Pass Assembly

One-Pass Assembly

Source Language Format
Location Field ,
Operation Field
Variable Field
Comments Field

DAP-16 Symbology
Symbols
Expressions
Literals
Asterisk Conventions

Assembly Listing

CONTENTS

SECTION 1
INTRODUCTION

SECTION 11
THE DAP-16 LANGUAGE

SECTION III

DAP-16 PSEUDO-OPERATION

Assembly Controlling Pseudo-Operations

ABS Pseudo-Operation
CFx Pseudo-Operation
END Pseudo-Operation
FIN Pseudo-Operation

LOAD Pseudo-Operation
MOR Pseudo-~Operation

ORG Pseudo-Operation
REL Pseudo-Operation

Data Defining Pseudo-Operations

BCI Pseudo-Operation
DAC Pseudo-Operation
DEC Pseudo-Opération
DBP Pseudo-Operation
OCT Pseudo-Operation

iii

3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-8
3-10

CONTENTS (Cont)

Loader-Controlling Pseudo-Operations
EXD Pseudo-Operation
LXD Pseudo-Operation
SETB Pseudo-Operation
List-Controlling Pseudo-Operations
EJCT Pseudo-Operation
LIST Pseudo-Operation
NLST Pseudo-Operation
CALL Pseudo-Operation
XAC Pseudo-Operation
SUBR Pseudo-Operation
Storage Allocation Pseudo-Operations
BES Pseudo-Operation
BSS Pseudo-Operation
BSZ Pseudo-Operation
COMN Pseudo-Operation
Symbol Defining Pseudo-Operation
EQU Pseudo-Operation

Special Mnemonic Codes

SECTION 1V

DAP-16 OPERATING INSTRUCTIONS

Source Program Preparation
Paper Tape
Cards
Object Program Preparation
Error Diagnosis

Object Program Format

, SECTION V
PROGRAMMING EXAMPLES

Appendix A Summary of DAP Pseudo-Operations
Appendix B DAP Operation Codes ,
Appendix C DDP-116 and DDP-516 Option Operation Codes

iv

3-1

ILLUSTRATIONS

Page
Desectorized Program Loading 1-3
Processing of One Line 1-7
Assembly Listing 2-3
Floating-Point Formats 3-9

TABLES

Page

Fleating- Point Number Translations 3-9

A-Register Bit Settings For 1/O Device Selection 4-2

DDP-116
GENERAL PURPOSE COMPUTER

3775

DDP-416
GENERAL PURPOSE COMPUTER

DDP-516
GENERAL PURPOSE COMPUTER

SECTION I
INTRODUCTION

This manual describes the programming of the DDP-116, DDP-416 and DDP-516
General-Purpose Digital Computers using the DAP-16 symbolic assembly program. In-
cluded are discussions of the DAP-16 language, DAP-16 pseudo operations, and DAP-16
programming techniques. For a complete discussion of symbolic language programming and
computer characteristics, refer to the DDP-116, DDP-416, or fhe DDP-516 Programmers

Reference Manuals.

PURPOSE OF DAP-16

DAP-16 is a programming aid that translates a symbolic (source) program into

machine language (object) code. DAP-16 provides the following features.

a. Enables symbolic programming while maintaining the characteristics, flexibility,
speed, and conciseness of machine language programming.

b. Permits the assignment of symbolic addresses to storage locations.

¢. Provides numerous pseudo-operations to supplement the standard DDP-116,
DDP-416, and DDP-516 instruction repertoires.

The pseudo-~operations allow the programmer to express concepts that have no
counterpart in machine language. Among the capabilities of the pseudo-operations are pro-
grammer defined assembly and loader controls, data definitions and program linkages.

DAP-16 incorporates the following features.

a. Employs an input/output selector {I0S) concept for input/output device selection.
(Preselected input/output for machines with less than 8K of memory.)

b. Provides a pool table for storage of symbols and literals, thereby avoiding
fixed-length tables.

c. Allows alphanumeric literals.

d. Allows compound expressions in the variable field.

e. Prints out and assigns storage for undefined symbols.

f. Flags illegal instructions and coding errors.

g. Allows single- or double-precision fixed- or floating-point constants.

h. Assembles DDP-116, DDP-416, or DDP-516 programs on any of the computers.
i. Allows operation in either a one-pass or two-pass mode.
j. Assembles programs which take advantage of the extended addressing, memory

lockout, memory parity and double-precision arithmetic options.

1-1

MODES OF OPERATION

DAP-16 operates in two basic modes: LOAD and DESECTORIZING. When oper-
ating in the load mode, DAP-16 closely approximates the addressing structure of a DDP-116,
DDP-416, or a DDP-516 computer. Operand addresses must be within the same sector as
the instruction,or in sector zero, otherwise an error flag is generated. This means that the
programmer must be aware of an operand's location with respect to sector boundaries. Pro-
grams assembled in the LOAD mode are always absolute. It is the programmers responsi-
bility to provide all indirect linkage required for intersector addressing and subroutine calls,

In the DESECTORIZING mode (Figure 1-1), DAP treats the DDP-16 class computer
as if all of memory (up to 32K with the DDP-516 extended addressing option) is directly
addressable. The DESECTORIZING mode does not require the programmer to be concerned
with the location of the operands with respect to sector boundaries. It also makes possible
the writing of very efficient, completely relocatable programs. In the DESECTORIZING
mode, an extended object code is generated which provides the DAP/FORTRAN relocating
loader with sufficient information to determine whether indirect address linkage must be
supplied for any memory referencing instruction or whether the address may be inserted
directly into the memory address instruction. Section IV contains a description of the ex-
tended object format used by the DAP/FORTRAN relocating loader to load desectorized pro-
grams. Large programs, when assembled in the DESECTORIZING mode, will generally
require less memory space and operate faster because the tedious chore of defining and
minimizing indirect address links is done by DAP-16 and the loader rather than by the pro-
grammer. In the DESECTORIZING mode, subroutines can be called using the CALL pseudo-
operator, and all subroutine linkage will automatically be completed by the DAP/FORTRAN
relocating loader. Programs may be assembled in the DESECTORIZING mode by placing an
ABS pseudo-op (in the case of absolute programs) or a REL pseudo-op {in the case of relo-
catable programs) at the beginning of the program to be assembled. Programs written to be
assembled in the DESECTORIZING mode should not, in general, modify or move memory
referencing instructions within the program during the course of program execution. The
common practice of address modification may be easily and safely accomplished by making
the address to be modified an indirect address link (using the DAC pseudo-operation). This

indirect address link may then be modified in the desired manner.

1-2

PROCESS MEMORY REFERENCE INSTRUCTION

f

ADDRESS RELOCATABLE

NO

YES

|

ADD (SUBTRACT)

RELOCATION FACTOR

L
7

NO

ADDRESS IN SAME SECTCR
AS INSTRUCTION?

YES

1S ADDRESS IN THE SAME
SECTOR AS THE CURRENT

BASE SECTOR?

YES

;

LOAD FLAG, TAG AND OP CODE
OF OBJECT WORD INTO BITS 1-6

;

LOAD 9-BIT ADDRESS INTO BITS
8-16 OF OBJECT WORD

l

RESET THE SECTOR BIT (BIT 7)
OF THE OBJECT WORD

v

INSTRUCTION COMPLETE

Figure 1-1.

LOAD FLAG, TAG AND OP CODE
OF OBJECT WORD INTOQ BITS 1-6

l

TRUNCATE ADDRESS TO 9 BITS
AND LOAD INTO BITS 8-16 OF
OBJECT WORD

k

SET THE SECTOR BIT (BIT 7) OF
THE OBJECT WORD

)

INSTRUCTION COMPLETE

DESECTORIZED Program Loading (Part 1)

1-4

s

NO, AN INDIRECT ADDRESS WORD MUST

BE FORMED.

NO EXTENDED-ADDRESSING YES

MODE?

Y

TRUNCATE ADDRESS

Y

TRUNCATE ADDRESS

TO 14 BITS TO 15 BITS
INSTRUCTION \ YES >
STX OR LDX?

)

COMBINE ADDRESS (BITS 3-16) WITH

THE FLAG (BIT 1) AND THE TAG (BIT2)

OF THE OBJECT WORD TO CREATE
AN INDIRECT ADDRESS WORD

WORD IF THERE IS ALREADY ONE IN

PLACE INDIRECT ADDRESS WORD IN
THE BASE SECTOR INDIRECT ADDRESS
WORD TABLE. (USE THE EXISTING

THE TABLE.)

Y

- LOAD THE OP CODE (BITS 3-6) INTO

THE INSTRUCTION WORD

l

SET THE FLAG (BIT 1) AND RESET
THE TAG (BIT 2)

Figure 1-1.

¥

COMBINE ADDRESS (BITS 2-16) WITH
THE FLAG (BIT 1) OF THE OBJECT
WORD TO CREATE AN INDIRECT

ADDRESS WORD

Y

PLACE INDIRECT ADDRESS WORD IN

THE BASE SECTOR INDIRECT ADDRESS

WORD TABLE. (USE THE EXISTING

WORD [IF THERE 1S ALREADY ONE IN
THE TABLE.)

|

LOAD THE OP CODE (BITS 3-6) AND
THE TAG (BIT 2) INTO THE
INSTRUCTION WORD

l

SET THE FLAG (BIT 1)

DESECTORIZED Program Loading (Part 2)

LOAD INTO THE INSTRUCTION WCRD
THE 9-BIT BASE SECTOR ADDRESS OF
THE INDIRECT ADDRESS WORD
(BITS 8-16)

YES IS THE BASE SECTOR THE NO
CURRENT SECTOR?

1 Y

SET THE SECTOR RESET THE SECTOR
BIT (BIT 7) BIT (BIT 7)
INSTRUCTION INSTRUCTION
COMPLETE COMPLETE

Figure 1-1. DESECTORIZED Program Loading (Part 3)

ASSEMBLY PROCESS

Initially, the DAP-16 assembler is loaded into computer memory. The sequence of
symbolic instructions in the source program to be are examined once or twice by DAP-16
at the programmers option. The contents of the A-register controls the number of passes
and also the input/output device selection. If bit 1 (the sign bit) of the A-register is set to a
1, the two-pass mode is selected; if bit 1 is set to a 0, the one-pass mode is selected. The

significance of the remaining 15 bits is discussed in Section IV.

Two-Pass Assembly

The sequence of symbolic instructions in the source program to be assembled are
examined twice by DAP-16; once to develop a dictionary of symbols, and a second time to
assemble the object program by referencing the dictionary. The DAP-16 dictionary has
storage space for defining operation mnemonics and symbolé. Three cells are used for each
operation or symbol; the encoded symbol or operation mnemonic is stored in the first two

cells, and defined in the third. For machine instructions, the definition cell contains the

1-5

corresponding operation code. For location names, the definition cell contains the address
at which the symbol is defined. For pseudo-operations, the definition cell contains a DAC

to the location of the pseudo-op2iution analyzer in DAP-16. DAP-16 obtains locations for

symbols by stepping a location counter for each line of the source program.

Program assembly takes place during pass two. Printing of each line is completed
before the next line is started, reducing requirements for storage space. The line is read
from the tape or card, stored in a special buffer (part of memory), the instruction or data
word assembly is performed and, if requested, the assembled line is printed. Punching of
the object program and punching or printing of the assembly listing is under control of the
contents of the A-register.

Figure 1-2 illustrates how each line is processed. DAP-16 calls the subroutines
necessary for reading and storing one line of type. The line is separated into its constituent
fields, and the operation mnemonic is examined. The nature of the indicated operation (nor-
mal or pseudo) determines the subroutines to be called to process the operation field. For
normal operations, DAP-16 determines the specified machine operation by table look-up and
then places the operation-code in the appropriate portion of the instruction word being
assembled. For pseudo-operations, analytical subroutines are called, and serve to modify
the assembly process, allocate storage, define data words, or provide for program linkages
at load time.

The variable field is then processed. Alphanumeric, octal, and decimal informa-
tion is converted to binary; the DAP-16 dictionary is then searched to evaluate symbols, and
calculations are performed to evaluate expressions. If the operation field specified a normal
machine operation, the resultant value forms the address field of the instruction being

assembled.

One-Pass Assembly

The dictionary development and the object program assembly is accomplished in the
same pass in a one-pass assembly. Forward referenced symbols (those that are used before
being defined) have an unknown value at the assembly time. DAP-16 flags such symbols with
a double asterisk (*%*) and assigns each symbol an internal symbol number which is outputted
with the instruction in which the symbol occurs. The loader program maintains a table of
symbol numbers and their use. When the value of the symbol becomes known, DAP-16 out-
puts the value along with the object program so that the loader can fill in references to the
symbol. The object program resulting from a one-pass assembly is longer than that for a
two-pass assembly because of the additional information that must be supplied to the loader.
Programs assembled in the one-pass mode must be loaded by the extended version of the

DAP/FORTRAN loader (LDR) rather than the standard loader (SLDR).

1-6

READ ONE
INPUT LINE

l

ISOLATE THE
VARIOUS FIELDS

\

PROCESS OP CODE
AND DETERMINE
TYPE

PSEUDO OP
ANALYZERS

I

NORMAL OP

J

Figure

¥

PROCESS
VARIABLE
FIELD

l

OUTPUT
ASSEMBLED WORD

1-2. Processing of One Line

1-7

g

SECTION 1II
THE DAP-16 LANGUAGE

This section describes the format and symbology of the source language to be used
with the DAP-16 assembly program. A discussion of the DAP-16 assembly listing is in-
cluded in this section to show the correlation of source and object programs in preparation

for the discussion of DAP-16 pseudo-operations in Section III.

SOURCE LANGUAGE FORMAT

Programs written in the DAP-16 source language consist of a sequence of sym-

bolic instructions or statements known as source lines, The example below shows a typical

symbolic instruction written on a DAP-16 coding form, This instruction represents one

source line.

PROGRAMMER]DATE PAGE i
PROGRAM CHARGE l
LocaTion |®| oreraTion |®] ADDRESS. x ®©f commEeNnTs 2]
! a |s] D2 30 72
T
STRT| LDA | |Cc¥&NS LEAD CENSTANTY
“ T
P R j——

As indicated in the coding sheet, symbolic instructions consist of four fields as follows.

a. The LOCATION field occupying character positions 1 through 4 of the source

line.

b. The OPERATION field occupying character positions 6 through 10 of the source
line.

- c. The VARIABLE field beginning at character position 12 and continuing until a

blank character or column 72 is present. This field is subdivided into the address subfield

and index subfield. The address and index subfields are separated by a comma.

d. The COMMENTS field begins at the character following the first blank character
which terminates the VARIABLE field.

The example above shows an instruction which is located at the symbolic location

STRT. The effect of the instruction is to load a constant, located at the symbolic location

CONS, into the A-register. The comments field has no effect on the program. The signi-.

ficance of the several fields are discussed in more detail in the paragraphs that follow.

Location Field

The location field may be used to assign a symbolic address or ''label’ to an in-
struction so that the instruction can be referred to elsewhere in the program, The symbolic
address in the location field consists of one to four characters, at least one of which is non-
numeric. DAP-16 assigns memory addresses to the symbolic locations when assembling

the object program.

Operation Field

The operation field is analogous to the operation-code portion of a machine lan-
guage instruction. The contents of the operation field may be either a machine language
instruction mnemonic, or one of the pseudo-operation mnemonics provided in the DAP-16
repertoire. Operation mnemonics are either three or four characters in length, In addi-
tion to specifying an operation, the operation field may also specify that indirect addressing
is desired by writing an asterisk (*) immediately following the operation-code mnemonic.
The DDP-116, DDP-416, and DDP-516 Programmers Reference Manuals specify the ma-

chine language instruction mnemonic and the function of each DDP-16 class instruction.

Variable Field

The variable field is normally used to specify an address and index register for
DDP-16 class instructions. When used with a DAP-16 pseudo-operation, the significance of

the variable field depends upon the nature of the pseudo-operation. (Pseudo-operations are

discussed in Section III,)

Comments Field

The comments field may be used for any comments the programmer cares to write.
This field has no effect on the assembler, but it is printed out on the symbolic assembly
listing. The format of the assembly listing is shown in Figure 2-1.

The portion of the assembly listing appearing on the right is a copy of the original

source program input.

0001 *SAMPLE ASSEMBLY LISTING

06002 ORG 512
0003 010600 0 02 01001 STRT LDA A4l
0004 01001 0 04 0looo STA a1
A 0005 01002 -0 02 00000 LDA=

0006 01003 0 06 01010 ADD =15
0007 01004 0 06 01011l ADD ='15
0008 01005 0 04 00700 STA STRT-64
0009 01006 0 02 01012 LDA ='-5
0010 01007 0414 76 LGL 2

01010 000017 '

01011 000015

01012 177773
0011 END ok

Figure 2-1, Assembly Listing

DAP-16 SYMBOLOGY

In addition to operation and pseudo-operation mnemonics, the DAP-16 language
contains symbols, expressions, and literals. A number of rules, discussed below, govern

the formation and usage of these language elements.

Symbols

Symbols generally represent memory addresses and may appear in both the loca-
tion and the variable fields of the symbolic instructions. The programmer defines a symbol
by placing it in the location field of an instruction, thus giving the instruction a symbolic
address. The assembly program keeps track of the location of instructions in the source
program by stepping a location counter by one for each instruction. When a symbol appears
in the location field, it is normally assigned the current value of the location counter. The
first such occurrence constitutes the definition of the symbol, and any subsequent occur-
rence in the location field will cause an error print-out. Undefined symbols, thatis, sym-
bols, appearing in the variable field of an instruction, and not in any location field, will
cause an error print-out. The value of an undefined symbol is some location at the end of
the program.

Symbols consist of 1 to 4 characters from among the 37-character set of the letters
of the alphabet, the 10 digits and the dollar sign character ($). At least one of the charac-
ters in any symbol must be alphabetic. The $ character should be used with care since it is
used in column 1 by the update program to flag a command card.

The following symbols are legitimate,

LOOP
STP2

Expressions

Expressions appear only in the variable field and may be either simple (composed
of a single element) or compound (composed of two or more elements separated by operators)
An element may be either a symbol, a decimal integer less than or equal to 65535, an octal
integer preceded by an apostrophe less than or equal to '177777, a single asterisk, or a
double asterisk.

When a single asterisk appears in the variable field as an element, it designates an
address equal to the current value of the location counter. Thus, * + 1 means 'this location
plus one." A double asterisk has a value of zero and is commonly placed in the variable
field when the address is to be modified later by the program.

Operators are used to separate elements in compound expressions. An operator
may be either a plus (addition), or a minus (subtraction). Only one operator is permissible
between each pair of elements.

Expressions may have either relocatable or absolute modes. A relocatable expres-
sion is one that is relative to the first instruction of the program; an absolute expression
is one which has a constant value regardless of its relative position in the program (e.g., an
integer). The overall mode of the expression depends on the mode of each of the individual
elements used to make up the expression.

Any permissible expression may be written to represent the address portion of a
standard instruction. Additionally, the standard index (location zero) may be specified by
following the address expression with a comma and the integer one.

The following are examples of valid expressions:

Assume (P) is '203 then Q +5="12
Q ='5 2Z +2 =115
2Z = '13 * = 1203
R =20 *-Q ='176
*+ 3+ Q- k%4 117303 - R ='17476

Literals

Reference to a memory location containing a constant may be accomplished by use
of one of the data defining pseudo-operations provided in the DAP-16 language. However,
it is sometimes more convenient to represent a constant literally rather than symbolically,

Consider the following example.

PROGRAMMER ‘ |paTE PAGE
PROGRAM CHARGE
Location [®Of oreraTion [®[aDDRESS, x ©[COMMENTS 2}
1 4l [s 10 |12 30 72{7

LDA | |A | [
A DEC 50

The first instruction refers to the symbolic constant A, The second instruction
defines the constant as having the decimal value 50. An equivalent reference to the constant

would have been as follows.

PROGRAMMER DATE PAGE g
PROGRAM CHARGE
Locarion | @) operaTion |©| ADDRESS. X O] commenTs &
) al {6 10; |12 30 72|7
T
LDA =50 4

In this example, DAP-16 interprets the =50 as a decimal literal, and automatically
generates and assigns a location for the value 50. The resultant location of the value 50 is
inserted into the address portion of the LDA instruction in.the object program.

Three types of literals, decimal, octal, and ASCII, are interpreted by DAP-16. A
decimal literal consists of the equals character (=), followed by the sign (if no sign, the
number is positive), followed by a fixed-point decimal integer. The rules for forming an
octal literal are identical, except that an apostrophe (') must follow the equals character.
ASCII literals consist of the equals character followed by an A (=A), followed by two ASCII
characters. If only one ASCII character is specified, the second character is assumed to be
a blank. The ASCII literals are an excepticn to the rule governing blanks in the variable
field. The two characters following the "A" form the literal and the third character must

be either a blank (end of the variable field) or a comma {beginning of the index subfield).

Asterisk Conventions

The conventions for use of the asterisk are summarized below.

a. An asterisk (*) in column 1 or first character in the location field: treat the
entire card or line as remarks.’

b. An asterisk (*) appended to instruction mnemonic: set the indirect address
flag.

c. An asterisk(*) as an element: current value of the location counter.

d. A double asterisk (**) as a symbolic address: put zeros in address field (ad-
dress will be modified by another instructicn).

e. A triple asterisk (*%%) as an operation code: op-code will be modified by another
instruction. The instruction will be assembled as a2 memory reference instruction with an

operation code. of 008.

ASSEMBLY LISTING

The printed output of DAP-16 is called the assembly listing. Itis a printing of the

symbolic input instructions in the order in which they appeared, together with the octal

representation of the binary words produced by the assembler. A sample listing is shown
in Figure 2-1. The first column contains the line ID number, which identifies the line and is
used by the source-program update routine. The next column shows the insinsry location

assigned to each instruction. The third column shows, in octal, the binary word assigned to

the locaticn.
The following observations taken from Figure 2-1 are intended to aid the reader in

analyzing the characteristics of DAP-16.

a. Line 1l contains an asterisk in the location field, causing DAP-16 to treat the
entire line as remarks,

b. Line 2 contains a pseudo-operation (ORG) which sets the DAP-16 location
counter to octal 1000, the starting address of sector one,

¢c. The expression in the variable field in line 3 means the current value of the
location counter, plus one. Consequently, DAP-16 has written octal 1001 into the address
field of the instruction word assigned to this location,

d. The symbol in the left margin of line 5 is a diagnostic, Diagnostics are ex-

plained in Section IV.
e. In line 10, the programmer has entered the number of shifts desired in an LGL

instruction. DAP-16 has generated the necessary two's complement form in the object

program.
f. Following line 10 is a literal pool of the three literals called for by the program.

2-6

SECTION III
DAP-16 PSEUDO-OPERATION

This section contains descripiions of all pseudo-cperations provided in the DAP-16
language. Ancillary discussions of program relocation, data formatting, and program link-

ages are included to clarify pseudo-operation functions. For a description of machine lan-
guage instructions, refer to the DDFP-16 Programmers Reference Manual, For a summary

listing of DAP-16 pseudo-operations, see Appendix A.

ASSEMBLY CONTROLLING PSEUDO-0OPERATIONS

Assembly controlling pseudo-operations (ABS, CFx, END, FIN, LOAD, MOR, OCRG,
and REL) are used to start and stop program assembly, and to select the assembly mode.
Programs may be assembled in either the absolute or relocatable mode. Relocatable pro-
grams can be placed anywhere within memory at the time of loading, whereas absolute
programs must be placed in their assembled locations.

During program assembly, DAP-16 maintains a location counter to assign memory
locations for each data and instruction word that is assembled. The output of the location
counter is shown on the assembly listing (Figure 2~1), If the program is assembled in the
absolute mode, the DAP-16 loader will load the object program into the locations shown on
the assembly listing. If the program is assembled in the relocatable mode (specified by an
REL pseudo-~operation), the loader will load the object program into the memory area speci-
fied by the programmer at program loading time. It is recommended that the main program
be loaded at a starting address equal to or greater than 1000y, so that sector zero can be
used exclusively for address linkage and transfer vectors.

DAP-16, in the absence of a2 LOAD or REL pseudo-operation, assembles programs
in the absolute mode. Relocatable programs are tentatively assembled for loading at a start-
ing location of zero. However, at load time, a relocation constant is added to or subtracted
from the address field of memory reference instructions and data words which reference

. symbolic locations. The relocation constant is equal to the difference between zerc and the
program starting location selected at load time.

When assembling relocatable programs, DAP-16 inserts control bits into the object
program (not shown in the assembly listing) that enable the loader to identify instruction and

T

data words referencing symbolic memory locations. The loader then adds the relocation

constant to the address fields of these words.

ABS Pseudo-Operation

The ABS (absolute) pseudo-operation is used to direct DAP-16 to assemble subse-
quent instructions in the absolute mode. The contents of the symbolic instructions contain-

ing the ABS pseudo-operation are as follows.

LOCATION Ignored
OPERATION ABS

VARIABLE Ignored
COMMENTS Normal

The effect of the ABS pseudo-op’eration is to assign absolute locations to the in-
structions assembled. The assembler then will continue to run in the absolute mode until
a2 REL, LOAD or END pseudo-operation is encountered. The ABS mode is the normal

assembly mode.

CFx Pseudo-Operation

- The CFx (configuration) pseudo-cperation is used to inform DAP-16 as to which
DDP-16 class computer the object programis to be executed on. The suffix"x' has the fol-
lowing connotation: 1 for the DDP-116, 4 for the DDP-416, and 5 for the DDP-516. If
the configuration is not specified, it is assumed that the object program is to be executed on
the same DDP-16 class computer as that on which the assembly is being performed. The

contents of symbolic instructions containing the CFx pseudo-operation are as follows.

LOCATION Ignored
OPERATION CFr1, CF4, or CF5
VARIABLE Ignored
COMMENTS Normal

The CFx pseudo-operation causes the DAP-16 to flag any instructions that are il-

legal for the object computer without interrupting the assembly.

END Pseudo-Operation

The END pseudo-operation is used to direct DAP-16 to terminate the current as-
sembly pass and prepare for the second pass if the two-pass mode has been selected. The

contents of symbolic instructions containing the END pseudo-operation are:

LOCATION Ignored
OPERATION END

3-2

VARIARBRLE {1) An expression that defines the address of the
instruction to which control should be transferred
at the conclusion of the loading process at object
time. If the variable field is left blank, the trans-
fer address will be set to the location of the first
instruction in the main program.

{2) Subroutine; ignored.

COMMENTS Normal
The END pseudo-operation causes DAP-16 to perform the following functions:

a. The current block of assembly output information is terminated.

b. All literals are punched out and undefined symbols are assigned locations.

c. An end jump block is punched following the assembly output. The jump ad-
dress is the value of the expression in the variable field. If the variable field is left
blank, the transfer address is set to the first instruction in the main program.

d. The assembly process is terminated if the current pass is the final cne.

The END pseudo-operation must be the last statement in the source program.
When operating in the two-pass mode, the START pushbutton must be depressed to
start processing pass two. While the computer is halted, the operator must repesition the

source tape to the beginning, or reload the card deck.

FIN Pseudo-Operation

The FIN {finish) pseudo-operation is used to direct DAP-16 to punch out all literals
accumulated up to the point at which the FIN pseudo-operation is initiated. The contents

of symbolic instructions containing the FIN pseudo-operation are as follows.

LOCATION Ignored
OPERATION FIN
VARIABLE Ignored

COMMENTS Normal

The effect of the FIN pseudo-operation is to cause DAP-16 to punch out all the ac-
cumulated literals. The purpose of this pseudo-operation is to permit literals to be inter-
spersed throughout the program thus minimizing the necessity for indirect address links

when referencing literals.

LOAD Pseudo-Operation

The LOAD pseudo-operation is used to direct DAP-16 to flag any instruction ad-
dress that required desectorizing. The contents of symbolic instructions containing the

LOAD pseudo-operation are as follows.

LOCATION Ignored
OPERATION LCAD

VARIABLE Ignored
COMMENTS Normal

The effect of the LOAD pseudo-operation is to cause DAP-16 to flag any instruction
whose address refers to a location outside the current sector or sector zero. The assem-
bler will continue to operate in the LOAD mode until an END, REL, or ABS pseudo-operation

is encountered.

MOR Pseudo-Operation

The MOR (more) pseudo-operation causes the computer to halt and await operator
action (except when magnetic tape input has been selected in which case MOR is ignored).

The contents of symbolic instructions containing the MOR pseudo-~operation are as follows.

LOCATION Ignored
OPERATION MOR

VARIABLE Ignored
COMMENTS Normal

ORG Pseudo-Operation

The ORG (origin) pseudo-operation sets the location counter to a specified value,

The contents of symbolic instructions containing the ORG pseudo-operation are as follows,

LOCATION Normal
OPERATION CRG
VARIABLE Normal, Any symbol used in this field must

have been previously defined.,

COMMENTS Normal
The ORG pseudo-operation performs the following functions,

a. The expression in the variable field is evaluated.

b. The location counter is set to the value thus determined,

A symbol in the location field of an ORG pseudo-operation is assigned the value of

the location counter prior to processing the ORG pseudo-operation. Consider the following

example,

PROGRAMMER [oaTE PAGE

PROGRAM CHARGE \
LOCATION |®] oPERATION [®} ADDRESS. X ©f commenTs [2)
1 4 6 10 12 30 T2}7.

T

g,

186G ‘100

. NgP
YNAL \BEG. | 111000
LOA X

The LDA instruction will be assigned to an absolute location (10008). The symbol
FUNA will be assigned the absolute value 101g. '

REL Pseudo-Operation

The REL (relocatable) pseudo-operation is used to direct DAP-16 to assemble the
subsequent instructions in the relocatable mode. The contents of symbolic instructions con-

taining the REL pseudo-operation are as follows.

LOCATION Ignored
OPERATION REL

VARIABLE Ignored
COMMENTS Normal

The effect of the REL pseudo-operation is to cause DAP-16 to assign relative loca-
tions to the instructions assembled. The assembler will then continue to run in the reloca-
table mode until the END pseudo-operation is encountered or until an ABS or a LOAD pseudo-

operation is encountered.

DATA DEFINING PSEUDO-OPERATIONS

The data defining pseudo-operations (BCI, DAC, DBP, DEC, and OCT) ‘are used for
defining constants and generatingadata for inclusion in the object program. The operations
in this cate'gory cause DAP-16 to interpret alphanumeric data, decimal numbers, and
octal numbers, respectively., The somewhat complex rules and restrictions for forming
expressions in the variable field in the DEC pseudo~operation are discussed in the para-
graphs immediately followiﬁg the summary coverage of format and content,

Note that decimal and octal constants can also be generated by the use of literals,

as discussed in Section II.

BCI Pseudo=Operation

The BCI (binary coded information) pseudo-operation is used to direct DAP-16 to
generate binary words in ASCII form from alphanumeric data. The contents of symbolic

instructions containing the BCI pseudo-operation are as follows.

- LOCATION Normal
OPERATION BClL i
VARIABLE N, followed by 2N alphanumeric characters, The

N specifies the number of words to be converted
and may not exceed 29,
COMMENTS Normal

The effect of the BCI pseudo-operation is to convert each group of two characters -
into a left-justified binary word in ASCII cade; these words are stored in successively higher

storage locations as the variable field is processed from left to right. If there is a symbol

in the location field, it is assigned the same location as the first word of binary data gener-
ated by the pseudo-operation. The alphanumeric characters in the message to be encoded
must be counted and entered as the first subfield. A typical e>xample is shown below (six
words of storage required). The BCI pseudo-operation is an exception to the rule in that the
first blank terminates the variable field. The comments field begins immediately following

the last character included in the character count.

PROGRAMMER IDATE PAGE
PROGRAM CHARGE
LocaTion [® oreraTiON (©] ADDRESS. X @[COMMENTS [2) b
g 4 |s 10] |12 30 72

T
Fi N BE & REMOUNT TAPE

DAC Pseudo-Operation

The DAC (define address constant) pseudo-operation directs DAP-16 to generate
a 16-bit binary word, which can be used by flagged memory reference instructions to
access an operand in any memory sector, The contents of symbolic instructions containing

the DAC pseudo-operation are as follows,

LOCATION Normal
OPERATION DAC or DAC:
VARIABLE Normal
COMMENTS Normal

The DAC pseudo-operation causes DAP~16 to evaluate the expression in the varia-
ble field and assemble a 16-bit address word. When the flag or tag (bit 1 or 2) is specified
as part of the address word, the value of constant generated is increased by 1000008 or
400008, respectively. It is the programmer's responsibility to ensure that addresses over

37777 are not mistaken for flags and tags and vice-versa.

DEC Pseudo-Operation

The DEC (decimal) pseudo-operation is used to direct DAP-16 to generate binary
words from decimal data. The contents of symbolic instructions containing the DEC pseudo-
operation are as follows.

LOCATION Normal
OPERATION DEC

3-6

VARIABLE One or more subfields, each containing a decimal
data item. The subfields are separated by commas,
The number of subfields is limited only by the
restriction that the total number of characters in
the instruction line must not exceed 72, Rules for
forming the decimal subfields are discussed below.

COMMENTS Normal

The effect of the DEC pseudo-cperation is to cause DAP-16 to convert each sub-
field to one, two, or three binary words, depending on whether the decimal data is single-
'precision fixed-point, double~-precision fixed-point, single-precision floating-point or
double-precision floating-point, These words are stored in successively higher storage
locations as the variable field is processed from left to right, If there is a symbol in the
location field, it is assigned the same location as the first word of binary data generated by

the pseudo-operation.

Fixed-Point Decimal Data, -- Fixed-point decimal data may be either single pre-
cision or double precision. A significance of four decimal digits can be maintained in
single-precision, fixed-point arithmetic on the DDP-16. In many arithmetic operations,
this degree of significance is adequate and is desirable because of the enhanced speed of
computation, A single-precision fixed-point decimal number requires one computer word
(sign and 15 bits of significance) and is written in two parts: the significant part, and the
scaling part. Double-precision fixed-point data consists of two words (sign and 30 signifi-
cant bits).

The significant part of the fixed-point number is a signed or unsigned decimal
number with or without a decimal point, If the decimal point is not specified, it is assumed
to be immediately to the right of the last digit (a2 decimal integer).

The scaling part of the fixed-point number is the letter B (for single-precision) or
the letters BB (for double-precision), followed by a signed or unsigned decimal integer
specifying the position of the understood binary point, If the scaling part is not present,
the number will be interpreted as a truncated decimal integer, whose understood binary
point is immediately to the right of the least significant bit in the computer word (position
16).

The general form of the scaling part is B + NN or BB + NN, where NN gives the
position of the understood binary point relative to the machine binary point. The minus
sign defines the understood binary point to be to the left of the machine binary point, and
the plus (or no sign) defines the understood binary point to be to the right of the machine
binary point. The machine binary point is defined to be between the sign bit and the most |
significant bit of the computer word; i.e., between bit positions 1 and 2. “

In addition to a scaling part, fixed-point numbers may also have an exponent part
specified by the use of an E field in addition to a B field. E fields are discussed more

fully in paragraphs on floating-point data.

3-7

The examples below show how DAP-16 produces fixed-point numbers. The left
column shows the decimal number to be translated. This is written in the variable field.
The right column shows the resultant octal word that would be generated by DAP-16.

Single-precision, fixed-point numbers are limited to magnitudes less than 215.

15 000017
15B+15 000017
15,001B5 036001
15.001BB5 036001
003044
-, 002B-2 177372
Floating-Point Decimal Data, ~- Floating-point data may be either single~precision

or double-precision. A single-precision, floating-point number requires two computer
worde (sign, 8-bit characteristic, and 23-bit fraction). A double-precision, floating-point
number requires three computer words (sign, 8-bit characteristic, and 39-bit fraction).

A decimal floating-point number is written as two parts: the significant part and
the exponent part. The significant part of a floating-point number is a signed or unsigned
decimal number written with a decimal point.

The exponent part of the decimal floating-point number is the letter E or the letters
EE followed by a signed or uansigned decimal integer. The exponent part serves the follow -
ing purposes.

a. It indicates whether the floating-point number is to be single (E} or double-
precision (EE}.

B. It specifies a constant in the form of 10 raised to the indicated power by which
the significant part of the numbexr is to be multiplied,

The resulting 8-bit binary exponent is expressed in 128 excess arithmetic and allows for
numbers in the range ! 0:5:389 '

All negative floating-point numbers are expressed in two's complement form, which
means that the exponent in this case is in one's complement form,

Figure 3-1 shows the formats of floating-point numbers and Table 3-1 shows
various examples of floating-point numbers generated by the DEC pseudo-operation, The
left-hand column shows the decimal number to be translated and the right-hand column
shows the octal words that would be generated by the DEC pseudo-operation. The fractional

portion of the floating-point number is always normalized by DAP-16.

DBP Pseudo-Operation

The DBP (double precision) pseudo-operation directs DAP-16, when-assembling on
a DDP-516 with the double-precision opticn, to generate binary words from decimal data.

The contents of symbolic instruction containing the DBP pseudo operation are as follows.

LOCATION Normal
OCPERATION DBP

9 10 16

EXPONENT MOST SIGNIFICANT MANTISSA | WORD |

LEAST SIGNIFICANT MANTISSA (16 BITS) WORD 2

23-BiT FRACTION '8

A, Single-Precision Format

g 10 i6
EXPONENT MOST SIGNIFICANT MANTISSA WORD |
NEXT MOST SIGNIFICANT MANTISSA (i6 BITS) WORD 2
LEAST SIGNIFICANT MANTISSA (i6 BITS) WORD 3

39-BIT FRACTION

B. Double-Precision Format

Figure 3-1. Floating-Point Formats

Table 3-1.
Floating-Point Number Translations
Decimal Number Octal Translation Remarks

.15E2 041170 ,15time5102:15
000000

+.15E + 2 041170 Same as first example
000000

-.15E2 136610 Negative of first example
000000

1234E-5 036545 Expression = ., 01234
013333

. 123 037375 Single-precision
171666

.1EO0 037346 Single-precision; binary
063146 exponent is negative

.1EEO 037346 Double-precision result
063146
063146

3-9

VARIABLE One or more subfields, each containing a decimal
data item. The subfields are separated by commas.
The number of subfields is limited only by the
restriction that the total number of characters in

the instruction line must not exceed 72.

The effect of the DBP pseudo-operation is the same as that of the DEC pseudo-
operation with the exception that the DBP always loads an even location and always generates

a double-precision constant.

OCT Pseudo-Operation

The OCT (octal) pseudo-operation directs DAP-16 to generate binary words from
octal data. The conteants of symbolic instructions containing the OCT pseudo-operation are

as follows.

LOCATION Normal
OPERATION ocT
VARIABLE One or more subfields, each containing an octal

data item. The subfields are separated by commas.
The number of subfields is limited only by the
restriction that the total number of characters on
the instruction line must be limited to 72.

COMMENTS Normal

The effect of the OCT pseudo-operation is to cause DAP-16 to convert each subfield
to a binary word. The octal data entries are right-justified, and assigned to successively
higher storage locations as the variable field is processed from left to right. If there is a
symbol in the location field, it is assigned to thé same location as the first word of binary
data generated by the pseudo-operation.

The only allowable characters in an octal field are: plus, minus, apostrophe, 0,

i, 2, 3, 4, 5, 6, 7, and commas separating the subfields. Octal numbers may be signed
(limited to magnitudes less than 215) or unsigned (limited to magnitudes less than 216). If
an octal number is unsigned, it is assumed to be positive. The appearance of an apostrophe

preceding the octal number is acceptable but is redundant.

LOADER-CONTROLLING PSEUDO-OPERATIONS

The loader-controlling pseudo-operations (EXD, LXD and SETB) are used to enter
or leave the extended addressing mode for desectorizing and to designate a memory sector
other than sector zero as the base sector for cross sector linkage. Pseudo-operations EXD
and LXD are valid only for those DDP-516 computers equipped with the extended memory
option. Pseudo-operation SETB is valid primarily for those DDP-516 computers equipped
with the memory lockout option. Programs containing the EXD, LXD or SETB pseudo-
operations must be loaded using the extended DA P/FORTRAN loader (LDR) rather than the
standard loader (SLDR).

3-10

EXD Pseudo-Operation

The EXD (enter extend-mode desectorizing) pseudo-operation directs the loader to
desectorize the subsequent instructions for execution in the extended addressing mode. The

contents of symbolic instructions containing the EXD pseudo-operation are as follows.

LOCATION Ignored
OPERATION EXD

VARIABLE Ignored
COMMENTS Normal

The effect of the EXD pseudo-operation is to increase the size of loader created in-
direct address words to 15 bits to increase addressing capability to 32K. This limits the
extend mode to one level of indexing since the tag of the instruction word is not moved into
the indirect address word. Therefore, bit 2 of the indirect address word is no longer inter-

preted as a tag but as part of the address.

LXD Pseudo-Operation

The LXD (leave extend-mode desectorizing) pseudo-operation directs the loader to
desectorize subsequent instructions for execution in the normal addressing mode. The con-

tents of symbolic instructions containing the LXD pseudo-operation are as follows.

LOCATION Ignored
OPERATION LXD

VARIABLE Ignored
COMMENTS Normal

The effect of the LXD pseudo-operation is to restore loading to the normal address-

ing mode.

SETB Pseudo-Operation

The SETB (set base sector) pseudo-operation notifies the loader that a base sector
other than sector zero will be used to execute subsequent instructions. The contents of sym-

bolic instructions containing the SETB pseudo-operation are as follows.

LOCATION Normal
OPERATION SETB
VARIABLE Normal. Any symbol used in this field must have

previously been defined.

COMMENTS Normal

The pseudo-operation SETBdesignates the sector in which the indirect address

words for cross sector linkage are to be stored. The value of the variable field designates
the first location into which indirect address words are to be stored. Successive words are
stored in successive locations. If a symbol appears in the location field, it will be assigned

the current value of the location counter.

operation does not reserve a block of storage for the indirect ad-~

programmer’s responsibility to reserve a block for the table in

the proper place via a BSS pseudo-operation.

TROLLING PS PERATIONS

ng pseudo-operations (EJCT, LIST, and NLST) are used to control

: source and objact program assembly listing. These operations have no
J brog Y T

J

{eject) pseudo«operation directs DAP-16 to begin or resume listing on a

The contents of symbolic instructions continuing the EJCT pseudo-operation are

ignored
OPERATION BICT
VARIABLE Ignored

Normal

seudo-operation is to cause the I/O selector program {IOS)
nds to advance the listing one page and continue listing on a
valid only with systems having a line printer and is ig-

is currently in effect.

1

ssudo-operation directs DAP-16 to print a side-by-side listing

The contents of symbolic instructions containing the LIST

Ignored
QOFPERATION LisT
VARIABLE Ignored
COMMENTS Normal

ect of the LIST pseudo-operation is to cause the source program and its
octal representation to be listed on the on-line typewriter or printer, The assembler then
mode until an NLST pseudo-operation is encountered,

LIST mode,

NLST ™

{no listing} pseudo~operation directs DAP-16 to refrain from producing

ram being assembled. The contents of symbolic instruc-

peration are as follows.,

= =
3=12

LOCATION Ignored

OPERATION NLST
VARIABLE Ignored
COMMENTS Normal

The effect of the NLST pseudo-operation is to inhibit DAP-16 from listing the
source program and its octal representation on the on-line typewriter or printer. The
assembler then continues to operate in the no-listing mode until a LIST pseudo-operation is

encountered, Initialization of the assembler automatically sets the listing mode,

PROGRAM LINKING PSEUDO-OPERATIONS

The DAP-16 pseudo-operations CALL and SUBR are used to generate communi=
cation links between programs. The CALL pseudo-operation initiates transfer of control to
an external subroutine., The SUBR pseudo-operation defines points of entry into the sub-
routine from an external program,

The variable field of the CALL pseudo-operation contains the name of the external
subroutine being called, Each time a particular subroutine is called, DAP-16 punches the
subroutine name as a special block and assembles a JST (jump and store) operation to loca-
tion ZERO. Then, as the object program is loaded into memory, the loader completes the
program linkage by requesting and loading the external subroutine being called, and filling in

the address of the JST imnstruction, desectorizing it if necessary.

CALL Pseudo-Operation

The CALL (call) pseudo- operation directs DAP-16 to generate instructions that will
transfer control to a specified subroutine. The contents of symbolic instructions containing

the CALL pseudo-operation are as follows.

LOCATION Normal

OPERATION CALL

VARIABLE A subroutine name {(one to six characters)
COMMENTS Normal

The effects of the CALL pseudo-operation are as follows.

a. The subroutine name from the variable field is punched as a special block type.

b. A JST with an address of zero is entered into the sequence of assembled
instructions.

c. If there is a symbol in the location field, it is assigned to the location of the

JST instruction inserted in step (b).

XAC Pseudo-Operation

The XAC (external address constant) pseudo-operation directs the loader to gener-
ate a 16-bit binary word which is used by flagged memory reference instructions to access
an operand outside the program. The contents of symbolic instructions containing the XAC

pseudo-operation are as follows.

LOCATION Normal
OPERATION KXAC or XACH*
VARIABLE External subroutine name {one to six characters),

optionally tagged

CONMIMENTS Normal

The X AT pseudo-operation causes the loader to evaluate the term in the variable
field and assemble information which specifies that a reference is made outside the program.
The external location must be defined either in the current or o separate program assembly
by SUBR pseudo-operation. At load time, after the external referonce is defined, the true

address, the flag, and the tag are generated and stored at the location of the XAC word.

SUBR Pseudo-OUperation

The SUBR ({subroutine) pseudo-operation is used to define a DAP-16 subroutine, and
to symbelically assign a name to the subroutine for external reference.
The contents of symbolic instructions containing the SUBR pseudo-operation are

as follows:

LOCATION Ignored
OPERATION SUBR
VARIABLE A one to six character name identifying an entry

point to a subroutine optionally followed by a

comma and a one to four character name defining

the entry point. The name defining the entry point

need be included only if it differs from the first

four characters of the identifying name, '
COMMENTS - Normal

The effect of the SUBR pseudo-operation is to cause the identifying name in the
variable field to be generated in the object program output as identification for the loader.
There must be as many SUBR pseudo-operations in a subroutine as there are entry points;
however, the entry points may be multiply defined. The SUBR pseudo-operation must be

the first operation of the subroutine, preceded only by another SUBR, if present.

The following is an example of a subroutine for which entry and return provisions

have been made

PROGRAMMER lpaTE PAGE

PROGRAM CHARGE
LocaTion|®f oreraTion |©f ADDRESS. X ®f commenTs &
i} al |s o] 12 30 72

L ISuBR | SINE

T

T

grud |DAc % ITAET 0F SINE ROVTINE \
V: - T Sl S ™ o o
J— i -
T e i

‘EX’/Z’ FLlom S/ME LoUu/7//E

Access to this subroutine from an external program is possible by use of the

following instruction,

PROGRAMMER IDATE PAGE
PROGRAM CHARGE
LocaTION [®©] oreraTION |®f ADDRESS, X ©f commenTs &
' al |s 10| jr2 30 72|73
T
CALL | |SINE
4
- - — o e

The following subroutine has two entry points, and each entry point is defined

twice,
PROGRAMMER lIDATE PAGE
PROGRAM CHARGE
LocaTion [OF operaTION |®] ADDRESS, X ® comMenTs)
Svér || sinve WAME FOR SINE ROUTINE
SUBR || COSINE NAME_FOR COSINE ROUTNE
SUBR || ARCTIN, ATHN WINE FOR ARCTINCOUVTINE
482 | | IINFE_SINE ALTERMATE NIME 708 SINE ROUTTNE
PLEL |
STHE (DA || STHRT” OF SINE ROUTINE
s
E T
A WHzx | | sme EXIT FROH SINE_RQUTINE
Casll IDAC | |3 STURT OF CasINE ROUTINE
i
3.
NP k| | cass EXIT 7000 CASINE COVTINE
AT HM PAC ¥ ¥ r§/74€/’ OF PECTAN #OUTINE
: T
P | | ATAN :fX//" FROM JECTAN LOUTINE

T

T

Entry to the sine portion of the subroutine is made by

or

CALIL
CALL

SINE
SINF

Entry to the cosine portion of the subroutine is made by

CALL

COSINE

Entry to the arc tangent portion of the subroutine is made by

CALL

ARCTAN

Programs coded as subroutines (i.e., programs preceded by the SUBR pseudo-
operation) cannot be loaded independently by means of the DAP-16 loader, but must be

called by a main program,

STORAGE ALLOCATION PSEUDO-OPERATIONS

The DAP-16 pseudo-operations (BES, BSS, BSZ, and COMN) enable the program-
mer to allocate memory cells for data storage or working space. For example, if a group
of 350 integers are to be ordered and assembled in a table, the symbolic instruction shown
below allocates 350 consecutive cells for storage of the integers, in symbolic locations

TABL through TABL + 349,

PROGRAMMER |DAT£ PAGE G
PROGRAM CHARGE
LocaTion | ®f operaTion |®) ADDRESS. x ©f commenTs IR
! a] s 10| li2 30 72 7J
T
TABL| B3S_ | [380 | | é

BES Pseudo-Operation

The BES (block ending with symbel) pseudo-cperation is used for reserving storage
locations., The contents of symbolic instructions containing the BES pseudo-operation are

as follows,

LOCATION Normal
OPERATION BES
VARIABLE Any absolute expression. Any symbol used in this

field must have been previously defined,

CCMMENTS Normal

The effect of the BES pseudo-operation is to increase the value of the location
counter by the value of the expression in the variable field. If there is a symbol in the loca=~
tion field, it is assigned the value of the location counter after the increase., Consider the

following example,

PROGRAMMER IDATE PAGE
\
PROCGRAM CHARGE
LOCATION [Of operaTiON [®O] ADDRESS. X ®©f commenTs I
1 al Is 10| [12 30 72(7
T
A .| gcT 5

T

BLY | BES, 5
B . .| @CT |
R - s ' ‘g

O

If A has been assigned location 50, BLK will be assigned location 56, leaving five

vacant cells; B will also be assigned to location 56.

BSS Pseudo-Operation

The BSS (block'starting with symbol) pseudo-operation is used for reserving
storage locations. The contents of symbolic instructions containing the BSS pseudo-opera-

tion are as follows,

LOCATION Normal
OPERATION BSS
VARIABLE Any absolute expression, Any symbol used in this

field must have been previously defined,

COMMENTS Normal

The effect of the BSS pseudo-operation is to increase the value of the location
counter by the value of the expression in the variable field, If there is a symbol in the
location field, it is assigned the value of the location counter before the increase. Consider

the following example,

PROGRAMMER |paTE - PAGE

PROGRAM CHARGE

LocaTioN [Of operaTION |®f ADDRESS, X ®f coMmENTs (SIN
i al js 10| j12 30 7274

A peT ' ' W}
BLK | |BSS

B BT
ey, T e /V

o 1 (e

In this case, if A has been assigned location 50, BLK will be assigned location 51,
and B will be assigned location 56, leaving five vacant cells.

The BES and BSS pseudo-operations effect the punched output during assembly.
When DAP-16 encounters one of these pseudo-operations, the block of machine instructions
being accumulated in a special punch buffer (internal to DAP-16) is punched out, regardless
of the number of words that have been accumulated. For BES and BSS, a new block is
started with an origin address equal to the DAP-16 location counter after processing the BES

or BSS pseudo-operation.

BSZ Pseudo-Operation

The BSZ (block storage of zeros) pseudo-operation is used for reserving storage
locations that are initially (at load time) set to ZEROs. The contents of symbolic instruc=-

tions containing the BSZ pseudo-operation are as follows,

LOCATION Normal
OPERATION BSZ v
VARIABLE Any absolute expression, Any symbol used in this

field must have been previously defined.
COMMENTS Normal
The effect of the BSZ pseudo-operation is to increase the value of the location

counter by the value of the expression in the variable field, If there is a symbol in the loca-

tion field, it is assigned the value of the location counter before the increase,

COMN Pseudo-Operation

The COMN (common) pseudo-operation is used for assigning absolute storage loca-
tions in upper memory. The contents of symbolic instructions containing the COMN pseudo-

operation are as follows,

LOCATION Normal
OPERATION COMN
VARIABLE Any absolute expression. Any symbol used in this

field must have been previously defined.
COMMENTS Normal
The effect of the COMN pseudo-operation is to cause DAP-16 to subtract the value
of the expression in the variable field from the COMMON base and assign this value to the
symbol in the location field, COMMON base is a user option. The COMN pseudo-operation

establishes a common data pool that can be referenced by several programs.

SYMBOL DEFINING PSEUDO-OPERATION

A symbol defining pseudo-operation (EQU) is provided for assigning an absoclute or

relocatable value to a symbol.

EQU Pseudo-Operation

The EQU (equals) pseudo-operation is used for defining a value for a symbol for
reference by other DAP-16 operations. The contents of symbolic instructions containing

EQU pseudo-operation are as follows,

LOCATION Normal; must contain a symbol
OPERATION EQU
VARIABLE Any absolute or relocatable expression. Any.symbol

used in this field must have been previously defined,

COMMENTS Normal

The EQU pseudo-operation causes DAP-16 to evaluate the variable field expres-
sion for value, and to assign the value to the symbol in the location field. The mode of the
symbol in the location field will be the same as the mode of the expression in the variable
field,

SPECIAL MNEMONIC CODES

Two special mnemonic codes are provided for the convenience of the programmer
when writing special instruction groups for calling sequences. The mnemonic codes are
assembled like any machine language instruction, in that they may have address, index,
and indirect fields. These codes are desectorized by the loader as 9-bit address memory

reference instructions.

Mnemonic Assembles As
PZE ZEROs in op-code
sk ZEROs in op-code

3-20

SECTION IV
DAP-16 OPERATING INSTRUCTIONS

This section contains instructions for preparing the source program and for using
DAP-16 to obtain an object program from the source program. A discussion of diagnostic
print-outs provided by DAP-16 as an aid in debugging the source program, and a descrip-

tion of the object program is included.

SOURCE PROGRAM PREPARATION

A DAP-16 source program is prepared on the coding form described in Section IL
It consists of a set of symbolic instructions terminated by an END pseudo-operation, (The
pseudo-operation MOR may be substituted under certain conditions.) The source progrém

is then punched on paper tape or cards.

Paper Tape

To increase paper tape efficiency as an input medium to DAP-16, a delineating
code is used to define the separation between fields. For example, if the location field is
not used, it is not necessary to space five times to be in position for the operation field.
A reverse slash character (\) is used as the delineating code on the ASR-33 or ASR-35.
In addition, the carriage return, followed by a line feed, will terminate the entire line. The

general format for the line follows.

LINE FEED, location field, reverse slash (or spaces

to bring total number of characters and space in loca-
tion field to five), operation field, reverse slash {or
spaces to bring total number of characters and spaces
in operation field to six), variable field, reverse slash
(or one or more spaces), comments field, X-OFF,
CARRIAGE RETURN. (The ASR-35 requires an X-OFF,
CARRIAGE RETURN and RUBOUT at the end of a line
because it reads two characters following an X-OFF,

whereas the ASR-33 reads only one character.
The source program is terminated by the END pseudo-operation.

Cards

When using cards, no purpose is served by trying to make a line of code more
compact, since the entire card must be read, Therefore, the card columns are used to

define the fields. The only exception to this is the termination of the variable field and the

4-1

start of the comments field. DAP-16 will assyme that the comments field starts after the
first blank column following the variable field. If a blank is embedded within the variable
field, DAP-16 will assume the remainder of the line to be comments (except in the BCI var-

iable field or for ASCII literals). The general format for the card is as follows.

LOCATION FIELD Columns 1 to 4
OPERATION FIELD Columns 6 to 10
VARIABLE FIELD Columns 12 to first blank column or column 72
COMMENTS FIELD First blank column to column 72
IDENTIFICATION Columns 73 to 80

FIELD

When preparing cards, symbols must be left-justified in their respective fields.
Columns 73-80 on the card are ighored by the assembly program and may be used to se-

quence the card deck.

OBJECT PROGRAM PREPARATION

Object program preparation consists of reading DAP-16 into computer memory,
then reading the source tape or card deck, with the contents of the A-register set to provide
the desired punching and printing options. Table 4-1 shows the significance of the various
bit positions on both standard systems and those systems equipped with standard options.

Principal options providsd by DAP-16 are as follows.

a. Punching the object program
Punching or printing the assembly listing
¢. Punching the object program and printing the assembly listing simultaneously

Asséembling multi-section programs

For very brief programs, option {¢.) provides an assembly listing for reference and simul-
taneously, an object program for execution. When an assembly listing is desired for pro-
grams of normal length, and a high-speed paper tape punch is available, the option of punch-
ing the assembly listing is most useful. The printed assembly listing can then be prepared
off-line. Option (d.) is useful for assembling programs prepared in several sections by use

of the MOR pseudo-operation.

Table 4-1.
A-Register Bit Settings For I/O Device Selection

Bit Meaning Selection

Teletype

Paper Tape Reader
Card Reader Source Device
Magnetic Tape No, 1

oy b W Y

Teletype with program
halts provided for
manual inputs

Table 4-1. (Cont)
A-Register Bit Settings For I/O Device Selection

Bit Meaning Selection
7 Teletype

8 Paper Tape Punch

9 Card Punch Object Device
10 Magnetic Tape No. 2

11 No Object Output

12 Teletype

13 Paper Tape Punch

14 Magnetic Tape No. 2 List Device
15 7 Line Printer

16 No Listing

ERROR DIAGNOSIS

DAP-16 is able to detect many types of clerical errors commonly made in coding

programs.

margin of the assembly listing (refer to Figure 2-1).

These errors are indicated by an appropriate error code printed in the left

and their associated flags are as follows.

Error

Multiply defined symbol

Erroneous conversion of a constant or a variable field
in improper format

Address field missing where normally required, or
error in address format

Operation code missing or in error

Location symbol missing where required, or error in
location symbol

Address of variable field expression not in sector being
processed or sector zero (applicable only in load mode)

Relocation assignment error
Symbel table or literal table exceeded
Major formatting error

Unclassified error in variable field of multiple field
pseudo-operator (i.e., DEC, OCT, etc.)

Improper use of or error in index field

Flag
M

< "M X o

-

Examples of errors that are detected

Errors in a field will generally result in that field being assembled as a 0. In the

case of multiply defined symbols, the first symbol definition is used. If the operation code

is illegal for computer configuration, the assembly is performed and the illegal codes are

flagged with an " O".

OBJECT PROGRAM FORMAT

The object is used by DAP-16 when assembling programs in the DESECTOR-
IZING mode. This mode allows for relocatable main programs and subroutines in
addition to absolute programs. Data are outputted in blocks composed of a parameter byte,
followed by a data-word byte, then a logical difference checksum. There are eight block
types (0-7} which are identified by bits 1 through 4 of the first word in the block. Block
type zero is further subdivided into subblocks which are identified by bits 5 through 10 of

the first word in The following paragraphs contain a description of the various

LT 4!5 s o7 T = 0, the block type
9 /ﬁB N sl S = 0, the subblock type
i A g N
T N is number of 16-bit words in the block
i - including the checksum and control words
S " 16

A-F is six-character name of the first entry

s g R point into the subprogram
|
= i P L-Q is six-character name of the last entry
: ;!79 6 point into the subprogram in this block.
BITS: | ~ 5 Z is checksum for all words in block except

for the checksum word

ypes O-1, 0-2, and 0-3 Special Action

T =0
‘bi T %E: 3 30317//’// S = 1, turn off non-load flag
3 o S = Z, turn on chain flag
‘ z S = 3, end-of-job
BITS: ¢ 16

Z is checksum

Block Type 0-4 Data

)T ds s ol T=0
/a3 N sl S =4
z AL 6 N is number of 16-bit words in the block
A [B I.is 15-bit address of location into which the
' 819 16 first data is to be loaded. Successive words
B ‘are loaded into location L + 1, L + 2, etc.
T) A, B... are data words in 24-bit format
Z .
BITS: | " Z is checksum

The data-word bytes have several formats, depending upon the last three bits of the

byte. These formats are as follows.

v o | Unmodified data generic or shift
BITS: | 16 22—24
EITI oP [ADDRESS | R [41] Address is known and to be desectorized
BITS: | 23—67—————22-23 24 R = 0, absolute
R = 1, positively relocatable
R = 3, negatively relocatable
[Fh-l oP mSYMBOL NUMBERI > l Symbolic ‘a‘ddress, to be desectorized when the
address is known
BITS: 123—678————2i22—2¢

Bit 8 = 0, this is the last symbol number
associated with the address

Bit 8 = 1, the following symbol number is
also associated with the address. The following symbol number will appear in bits 8§-21 of
the next data word providing the current word is not the last word in the current data block.
If the current word is the last word in the current block, the symbol number will appear in
the next data block.

I?FH R l ADDRESS I 4J Address is known, do not desectorize
BITS: 1 234-56 2122-24 R = 0. absolute
R = 1, positively relocatable
R = 3, negatively relocatable

[FIT/ /7] symsoL numeeR | 6 |

BITS: 123 78

associated with the address.

2122-24

Symbolic address, not to be desectorized when
the address is known.

Bit 8 = 0, this is the last symbol number asso-
ciated with the address.

Bit 8 = 1, the following symbol number is also

The symbol number may appear in the next block if the cur-

rent word is the last word in the current data block.

Block Type 0-10 Symbol Number Definition Block

i T 4i5 S soV //
s N s
CloRsla K [
\Y
Zz
BITS: 18
Block Type 0-14 End
LT 4ls S |0V
//i3 Y 8
ﬁz L 16
r4
BITS: | 16

Block Types 0-24, 30, 54, 60 Modes

, T als

S IOV/ /// i

s N

NG,

Z

16

BiTS: |

symbol is referred to only once

= 1, symbol is referred to more than once
= 0, absolute

positively relocatable

3, negatively relocatable

is 13-bit symbol number

is 16-bit symbol value (positive or negative)

N < R X N IHOOQO®H
]

is checksum

T =0
= 14

07}

N is number of 16-bit words in the block
(always 4)

L is the jump address if this is the end of
a main program. L is zero if this is the
end of a subprogram

Z is checksum

0

24, relocatable mode

30, absolute mode

nw om0 e
{]

54, enter extended-memory desectorizing
mode

S = 60, leave extended-memory desectorizing
mode

N is number of 16-bit words in the block
(always 3)

Z 1is checksum

Block Type 0-44 Subprogram Call

0
44

(4

L T 4s S ol
s NV
! A 8 =
= B F 16
Q
4

BITS: |

N is number of 16-bit words in the block
(always 7) :

A-F is six-character name of the entry poin’
Q 1
Q = 0, reference is to be desectorized

Z is checksum

reference is not to be desectorized

]

3

The last data word loaded is a reference to
this subroutine name.

Block Type 0-50 Subprogram Entry Point Definition

DA

=0

50

is number of 16-bit words in the block

{¢

{(

. T als S o
o4 N 0
! A 8 =
i 9 F 16
! L 8 =
i 9 Q 16

BITS: 1=

Block Type 0-64 Set Base Sector

T ds s V)

)

Rl2

s N
L 16

Z

16

BITS: |

A-F is the first six-character name of this
entry point into the subprogram

L-Q is the last six-character name of this
entry point into the subprogram

Z is checksum

=0

= 64

is number of 16-bit words in the block (always 4)
= 0, absolute location

= 1, relocatable location

Rz 0

is 15-bit address of location at which the cross-
sector indirect word table begins

Z is checksum

Block Types 0-20, 0-34, and 0-40 are illegal. They are reserved for internal functions of
DAP-16.

Block Types 1 and 2 Program Words

LT 415 A IO?” A g T = 1, absolute program words
| A 8]9 ! s T = 2, relative program words
j N is number of 16-bit words in the block
| =R I-X is 24-bit data words
T ig X 16 Z is checksum
4
BITS: 16

The data-word bytes in this block have several formats depending upon the last

four bits of the byte. These formats are shown as follows.

[/// 0 } Load first 16 bits into memory unchanged
TS and (-1 2l——24

!F!T] op l ADDRESS ! | i Address is not altered

BITS: 1 23—6 7———e—eeee 200 2| 24

[F]T[opP i ADDRESS E > ! Address is positiyely relocated {add 4)

BiTs: i 2 3—6 7T ——m 20 21—24

Address is negatively relocated (add A,

[Flfor | abpress | 3 | complement)

BITS: | 2 3§ 7?20 21—24

For types one through three, the address modified is interpreted as a 9-bit quantity,

In case of an intersector reference, an indirect reference to sector zero is created.

[Fltfor | aApbress [s | Address is not altered

sirs: { 2 3—»=6§ 7——————20 21—24

[F]T] op | ADDRESS [6 | Address is positively relocated
BITs: 1 23—6 7 ——20 21—24

|FlTiop | ADDRESS | 7 | Address is negatively relocated
BITs: 123—6 7——mr—m—ueo—20 2—24

For types 5 through 7, the resultant address is merely combined with the F and T
fields before loading.

[u] y [4 | U is all ONEs

BITS: | 67 20 2—24 V is relative address of an instruction in a string
of instructions each of which uses the same
symbol. The relative address (V) is supplied
to each instruction requiring the address. The
string may contain DAC pseudo-operations

which accept a full 14-bit address and are distinguished from those instructions requiring a

9-bit address by their zero operation code. No instruction in a string may be desectorized

into a base sector other than the currently active base sector.

Block Types 3 and 4 End Jumps

= 3, jump address is absolute

T 4?7///%% A g
n A 8187/ /]
Zz

BITS: | 6

= 4, jump address is relative

is jump address

NP> oA

is checksum

Block Types 5 and 7 Subroutine or Reference Call

T = 5, Subroutine call
T = 6, reference to an item in common

T “IFF[" op 'Ol“ A 6 A is address of instruction. If T = 5 the address

; A 8 B is relative to the common base sector

T o B-G is six-character name of subroutine or
| G 8{7///’///////) common item
2 Z is checksum
BITS: 1 16 If C =5, the operation code is JST*

Block Type 6 Subroutine or Common Block Definition

BITS: |

LT ;F/////i//Au A e
! . 8 B
! G alo s ol 7z ;“

4-10

T =6

A is entry print relative to the beginning of the
subroutine if S = 0 or 2

= size of the common block if S = 1 or 3

B-G is six-character name of subroutine or
common block

S = 0, subroutine definition

S = 1, common block definition

S = 2, subroutine definition

S = 3, data storage in common follows this

block

Z is checksum

SECTION V
PROGRAMMING EXAMPLES

This section of the manual contains a program example. It is not intended to be
executable but is given to illustrate various DAP-16 pseudo-operation features and error
flags. Refer to the appropriate DDP-16 Programmers Reference Manual for additional pro-

gramming examples.

900:
0gge
0004
0004
voos
00006
000L7
008
9009
0010
6011
0012
Cols
0014
Colo
vidle
G017
0ol18
uni9
Joecu
Uoel
Jozz
3023
Jp2e
2025
voege
2027
3028
3029
0030
w031
0032
[SVRRY

J034
v03s

JJ36
cu37
0038
v0JS9
GQ40
wial
w42
4043
G044

vg4s

¢046
Goa7

6048

C049

0050
9051
v0s2
V053
uos4
2055
Juse
0057

wi2lo
viuzlt
ud212
vi213
yb214
uu21s
wu2le
guz17
vuz2eo
o221
o222
Lu2es
wué24
uue2s
Uu226
U227
U236
o231
ui232
FIPIK]
L0234
Lu23s
L0236
G037
VU240
yuz4t

0v24e
yuzay
vueda

LuZ4s

VU246
w247
w3250
guesl
vo2zs2
U253
0u254
¢025s
40256
Gu2s7
3260
ouz2é1
w0264
w0263
Quz264
gu26s
QU266
U267
w0270
vu2714
w272
¢0e73
00274
0d275
vuzz6
w277
0isi2
gusle

0 02 VL2274
0 04 QUOUU
14004y

1 05 90276
0 12 00000
0 01 00214
a9 11 00277
40000V

0 01 00222
guoQuou

0 0Z =

0 04 UOOUU
1 02 Gu24s
Q7 010a

g 01 vG223
03 viva
0406 /0

17 0004

0 04 00231
Q416 70

17 Guoa4

J 01 vg234
0 1< 0U0U0
0 C1 w224
0300090
177775

106612
147656
145656

U 02 UYQoo
177534
IV R Y
800145
0 177356
-1 00 00250
120249
12024y
00p001L
000003
Qdul44
177774
077777
071143
173346
007320
g5057¢6
177372
036001
0360C1
001422
036545
013333
035742
046722
170651
-1 177724
-1 00 0025U
0 0000GUU
105314

000324

« C500-001-6504 (DAP=-TEST}) CONTROL NUMHER 7011687 REV.
« START OBJECT PROGRAM AT OCTAL 190
<
® PROGRAM SHUULD TYPE ®0.K.? AND HALT
L]
-«
ORG 210
LUA ao COMPUTE CHECKSUM
STa o] »
CRA *
ERA TT+1sl ”
IRS ¢ "
JMP =y *
CAS CKSM *
HLY b
JMP w2 *
HLT WRONG SuM
T t.DA a=3 RIGHT SuUM
STA 0 TYPE *0.X.”
TTIT LUA MSG+JIsl -
SKS *104 *
JHp =] *
oce 104 -
ARR 8 -
ora 4 o
JiP wel »
ALR 8 w
OTA 4 *
JMP -] *
IRS 0 *
JMP 1TIT *
HLT TEST CCMPLETE
FIN
MSG OCT 106612 CARRIAGE RETURN + LINE FEED
BCI 200oK,

® THE FOLLOWING CHECKS DAP QPERATION

XX
Yy
14
M

00
7

CKSM

LiM

LUA
EQU
EGU
EGU
DAC
PLE®
BCI

ocT

DEC
DEC

DEC

DeC

DAC#
PZE*
DAC
[sIon}
HES
EER)
EQU
END

+iel42m243x3
-XX%1

J+3+3
XX=2100
YY=ZZep
XX+3s1

25

1535144,<4,77777

<9IE+30
J99E=-30

~.0028-2,15.0018+5,15,00188+5

1234 ,E=5+,15FE=2

=TT¢T=1,1
XX+3,1
-
1Us314

1y

10

-

A

0010
0020
0030
0040
0050
0060
0070
0080
aos0
0100
otlo
0120
6130
0140
0150
0160
0170
0180
0190
c200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330

0340
0350

0360
0370
0380
0390
0400
0410
0420
0430
0440

0450

0460
0470

0480

0490

0500
0510
0320
0530
0540
0580
0560
0570

SUMMARY OF DAP PSEUDO-~OPERATIONS

APPENDIX A

Contents of Fields

Oper.
Mnemonic | Meaning Class Location Operation Variable Effect
ks ZERO Special Normal Aok Normal ZEROs put into op-code
op-code mnemonic
: code
ABS Absolute Assembly | Not Applicable ABS Ignored Subsequent instructions
mode control assembled in absolute
mode
BCI Binary Data de- Normal BCI N, followed by 2N | 2N alphanumeric char-
coded in- fining alphanumeric acters (N<30) converted
formation characters into binary
BES Block end- | Storage Normal; assigned| BES Previously defined| Increases value of loca-
ing with allocation| location counter absolute expres- tion counter by value of
symbol value after sion expression in the vari-
increase able field
BSS Block start-| Storage Normal; assigned| BSS Previously defined| Same as BES
ing with allocation| location counter absolute expres-
symbol value before in- sion
crease
BSZ Block stor- | Storage Normal BSZ Previously defined| Sames as BES (used for
age of allocation absolute expres- defining storage blocks
ZEROs sion that are initially cleared)
CALL Call sub- Program | Normal CALL Name of a subrou-{ Generates a JST* to call
routine linking tine referenced subroutine
’ through transfer vector
CFx Configura- | Assembly | Not Applicable CF1 Ignored Specifies which DAP-16
tion control or class computer will ex-
CF4 ecute the object program.
CES CF1 for DDP-116
CF4 for DDP-416
CF'5 for DDP-516
COMN Put in com- | Storage Normal COMN Previously defined| Value of expression in
mon stor- allocation absolute expres- variable field is used to
age sion assign location in a com-
mon data pool for symbol
in location field; facili-
tates reference by other
programs
DAC Define ad- | Data de- Normal DAC Previously defined| Causes DAP-16 to assem-
dress con-| fining absolute or relo- ble a 16-bit address word
stant catable expression
DBP Double pre- | Data de~ Normal DBP Decimal subfields Decimal characters con-
cision fining verted into binary with
double precision option
DEC Decimal- Data de- Normal DEC Decimal subfields | Decimal characters con-
to-binary fining verted into binary
END End of as- | Assembly | Not Applicable END Address for trans-{ Terminates assembly pass
sembly control fer of control,
pass following loading

process

A=l

APPENDIX A (Cont)

SUMMARY OF DAP PSEUDO-OPERATIONS

Oper. Contents of Fields
Mnemonic| Meaning Class Location Operation Variable Effect
EQU Equals Symbol Normal (See EQU Previously defined |Causes DAPto assign the
defining "Effect'" column) absolute or relo- value and mode of the ex-
catable expression | pression in the variable
field to the symbol in the
location field
EXD Enter ex- Louder Not Applicable EXD Ignored Subsequent instructions as-
tend mode control sembled in extended ad-
dressing mode
FIN Finish Assembly | Not Applicable FIN Ignored Punch out literals
control
LOAD Load mode | Assembly | Not Applicable LOAD Ignored Subsequent instructions
control assembled in load mode
LIST Generate List Not Applicable LIST Ignored Causes print-out of source
listing control and object programs,
side-by-side
LXD Leave ex- Loader Not Applicable LXD Ignored Subsequent instructions
tend mode control assembled in normal ad-
dressing mode
MOR More Assembly | Not Applicable MOR Address for trans- {Interrogate sense switches
control fer of control to determine type of as-
sembly control
NLST No listing List Not Applicable NLST Ignored Inhibits program print-out
control
OCT Octal-to- Data de- Normal OoCT Octal subfields Octal characters con-
binary fining verted into binary
ORG Origin Assembly | Normal ORG Previously defined |Value and mode of expres-
control absolute or relo- sion in variable field is
catable expression | equivalent and location
counter is set accordingly
PZE Plus ZERO | Special Normal PZE Normal ZEROs put into op-code
mne -
monics
code
REL Relocatable | Assembly | Not Applicable REL Ignored Subsequent instructions
mode control assembled in relocatable
mode
SETB Set base Loader Normal SETB Previously defined [Specify a sector other
mode control absolute or relo- than ZERO as the base
catable expression | sector
SUBR Entry point | Program | Ignored SUBR Name of subrou- Punches subroutine name
linking tine, entry ad- for identification in sub-
dress routine library
XAC External Program | Normal XAC Name of subroutine [Cause DAP-16 to assemble
address linking 16-bit address word defining
constant location outside the program|

Octal
Mnemonic Code
ACA 141216
ADD 06
ALR 04156
ALS 0415
ANA 03
AQA 141206
ARR 0406
ARS 0405
CAL 141050
CAR 141044
CAS 11
CHS 140024
CMA 140401
CRA 1400040
CSA 140320
ENB 000401
ERA 05
HLT 000000
IAB 000201
ICA 141340
ICL 141140
ICR 141240
IMA 13
INA 54

APPENDIX B

DAP OPERATION CODES

(Listed in Alphabetical Order)

Instruction

Add Cto A
Add

Logical Left Rotate
Arithmetic Left Shift
AND to A

Add One to A
Logical Right Rotate

Arithmetic Right Shift

Clear A, Left Half
Clear A, Right Half
Compare
Complement A Sign
Complement A
Clear A

Copy Sign and Set Sign Plus

Enable Program Interrupt
Exclusive OR to A
Halt

Interchange A and B

Interchange Characters in A

Interchange and Clear Left Half

of A

Interchange and Clear Right
Half of A

Interchange Memory and A
Input to A

Type
G
MR

SH
SH
MR

G
SH

SH

G

MR
10

Configuration(s)
DDP-116 and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116 and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-516
DDP-516
DDP-116 and DDP-516
DDP-116 and DDP-516
DDP-116 and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116 and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116 and DDP-516
DDP-516
DDP-516

DDP-516
DDP-116 and DDP-516

DDP-116, DDP-416,
and DDP-516

Mnemonic

INH

INK

IRS

JMP

JST

LDA

LDX
LGL

LGR

LLL
LLR
LLS
LRL
LRR
LRS
NOP

OCP

OTA

OTK
RCB
sSCB
SKP

-SKS

'SLN

SLZ

SMI

SMK

SNZ

SPL

Octal

Code

001001

000043
1z

01

10

02

i5

0414

0404

0410
0412
0411
0400
0402
0401
161000
14

74

171020
140200
140600
100000

101100
100100

101400

74

101040

100400

Instruction

Inhibit Program Interrupt

Input Keys

Increment, Replace and Skip
Unconditional Jump

Jump and Store Location
Load A

Load X
Liogical Left Shift

Logical Right Shift

Long Left Logical Shift
Long Left Rotate

Long Arithmetic Left Shift
Long Right Logical Shift
Long Right Rotate

Long Arithmetic Right Shift
No Operation

Output Control Pulse
Output From A

Qutput Keys
Reset C Bit

Set C Bit
Unconditional Skip

Skip if Ready Line Set

Skip if (Alb) is ONE
Skip if (Alé) is ZERO

Skip if A Minus
Set Mask
Skip if A Not ZERO

Skip if A Plus

Type
G

G
MR

MR
MR
MR

MR
SH

SH

te

10

10

10

IO

Configuration(s)

DDP-116, DDP-416,
and DDP-~516

DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516 '

DDP-516

DDP-116, DDP-416,
and DDP-516

DDP -116, DDP-416,
and DDP-516

DDP-116 and DDP-516
DDP-116 and DDP-516
DDP-116 and DDP-516
DDP-116 and DDP-516
DDP-116 and DDP-516
DDP-116 and DDP-516

DDP-116, DDP-416,
and DDP-516

"DDP-116, DDP-416,

and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-516
DDP-116 and DDP-516
DL P-116 and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116 and DDP-516
DDP-116 and DDP-516
DDP-116, DDP-416,

and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-116, DDP-416,
and DDP-516

DDP-~116, DDP-416,
and DDP-516

Octal

Mnemonic Code_ Instruction Type Configuration

SRC 100001 Skip if C Reset G DDP-116 and DDP-516

SR1 100020 Skip if Sense Switch 1 is Reset G DDP-116 and DDP-516

SR2 100010 Skip if Sense Switch 2 is Reset G DDP-116 and DDP-516

SR3 100004 Skip if Sense Switch 3 is Reset G DDP-116 and DDP-516

SR4 100002 Skip if Sense Switch 4 is Reset G DDP-116 and DDP-516

SsC 101001 Skip if C Set G DDP-116 and DDP-516

SSM 140500 Set Sign Minus G DDP-116 and DDP-516

SSP 140100 Set Sign Plus G DDP-116 and DDP-516

SSR 100036 Skip is no Sense Switch Set G DDP-116 and DDP-516

SSs 101036 Skip if any Sense Switch is Set G DDP-116 and DDP-516

Ss1 101020 Skip if Sense Switch 1 is Set G DDP-116 and DDP-516

SS2 101010 Skip if Sense Switch 2 is Set G DDP-116 and DDP-516

SS3 101004 Skip is Sense Switch 3 is Set G DDP-116 and DDP-516

SS4 101002 Skip if Sense Switch 4 is Set G DDP-116 and DDP-516

STA 04 Store A MR DDP-116, DDP-416,
and DDP-516

STX 15 Store X MR DDP-516

SUB 07 Subtract MR DDP-116, DDP-416,
and DDP-516

SZE 100040 Skip if A ZERO G DDP-~116, DDP-416,
and DDP-516

TCA 140407 Two's Complement A G DDP-116 and DDP-516

APPENDIX C

DDP-116 and DDP-516 OPTION OPERATION CODES
(Listed in Alphabetical Order)

Octal
Mnemonic Code
DADA 06
DBL& 000007
DIV 17
DLDA 02
DSBA 07
DSTA 04
DXA 000011
ERM 001401
EXA 000013
MPY 16
NRM 000101
RMP 000021
SCA 000041
SGL& 000005
SPN 100200
SPS 101200

Instruction

Double Precision Add

Type

Enter Double Precision Mode

Divide

Double Precision Load

Double Precision Subtract

Double Precision Store

Disable Extended Mode
Enter Restricted Mode
Enable Extended Mode
Multiply

Normalize

Reset Memory Parity Error

Shift Count to A

Enter Single Precision Mode

Skip if No Memory Parity Error

Skip if Memory Parity Error

AApplicable to DDP-516 only.

MR

G

MR

MR

MR

MR

Option
High-Speed Arithmetic
Unit

High-Speed Arithmetic
Unit

High-Speed Arithmetic
Unit

High-Speed Arithmetic
Unit

High-Speed Arithmetic
Unit

High-Speed Arithmetic
Unit

Extended Addressing
Memory Lockout
Extended Addressing

High-Speed Arithmetic
Unit

High-Speed Arithmetic
Unit

Memory Parity

High-Speed Arithmetic
Unit]

High-Speed Arithmetic
Unit

Memory Parity
Memory Parity

Honeywell

COMPUTER CONTROL DIVISION

Printed UK
Copia Productum Harrow

" FRANCE

Honeywell SA,

Computer Control Division,

12 rue Avaulée,
92 Malakoff.

& 253.9620, 735,8300

Telex: 26.013

GERMANY
Honeywell GmbH,

Computer Control Division,

6050 Offenbach/Main,
Kaiserleistrasse 55.

= 8.0641

Telex: 41-52758

GREAT BRITAIN

Honeywell Ltd.,

Computer Control Division,

53 Clarendon Road,
Watford, Herts.

B Watford 42391
Telex: 934227

NETHERLANDS
Honeywell NV,

Computer Control Division,

Egelenburg 150-152,
Amsterdam-Buitenveldert.
® 020-429666

‘Telex: 13066

SWITZERLAND
Honeywell AG,

Computer Control Division,

8008 Ziuirich,
Dufourstrasse 47.
& (051) 47.44.00
Telex : 53.561

